-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_network.py
237 lines (185 loc) · 7.96 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import numpy as np
import sys
sys.path.append("game/")
import skimage
from skimage import transform, color, exposure
import keras
from keras.models import Sequential, Model, load_model
from keras.layers import Dense, Flatten, Activation, Input
from keras.layers.convolutional import Convolution2D
from keras.optimizers import RMSprop
import keras.backend as K
from keras.callbacks import LearningRateScheduler, History
import tensorflow as tf
import pygame
import wrapped_flappy_bird as game
import scipy.misc
import scipy.stats as st
import threading
import time
import math
GAMMA = 0.99 #discount value
BETA = 0.01 #regularisation coefficient
IMAGE_ROWS = 85
IMAGE_COLS = 84
IMAGE_CHANNELS = 4
LEARNING_RATE = 7e-4
EPISODE = 0
THREADS = 16
t_max = 5
const = 1e-5
T = 0
episode_r = []
episode_state = np.zeros((0, IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS))
episode_output = []
episode_critic = []
ACTIONS = 2
a_t = np.zeros(ACTIONS)
#loss function for policy output
def logloss(y_true, y_pred): #policy loss
return -K.sum( K.log(y_true*y_pred + (1-y_true)*(1-y_pred) + const), axis=-1)
# BETA * K.sum(y_pred * K.log(y_pred + const) + (1-y_pred) * K.log(1-y_pred + const)) #regularisation term
#loss function for critic output
def sumofsquares(y_true, y_pred): #critic loss
return K.sum(K.square(y_pred - y_true), axis=-1)
#function buildmodel() to define the structure of the neural network in use
def buildmodel():
print("Model building begins")
model = Sequential()
keras.initializers.RandomUniform(minval=-0.1, maxval=0.1, seed=None)
S = Input(shape = (IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS, ), name = 'Input')
h0 = Convolution2D(16, kernel_size = (8,8), strides = (4,4), activation = 'relu', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform')(S)
h1 = Convolution2D(32, kernel_size = (4,4), strides = (2,2), activation = 'relu', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform')(h0)
h2 = Flatten()(h1)
h3 = Dense(256, activation = 'relu', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform') (h2)
P = Dense(1, name = 'o_P', activation = 'sigmoid', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform') (h3)
V = Dense(1, name = 'o_V', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform') (h3)
model = Model(inputs = S, outputs = [P,V])
rms = RMSprop(lr = LEARNING_RATE, rho = 0.99, epsilon = 0.1)
model.compile(loss = {'o_P': logloss, 'o_V': sumofsquares}, loss_weights = {'o_P': 1., 'o_V' : 0.5}, optimizer = rms)
return model
#function to preprocess an image before giving as input to the neural network
def preprocess(image):
image = skimage.color.rgb2gray(image)
image = skimage.transform.resize(image, (IMAGE_ROWS, IMAGE_COLS), mode = 'constant')
image = skimage.exposure.rescale_intensity(image, out_range=(0,255))
image = image.reshape(1, image.shape[0], image.shape[1], 1)
return image
# initialize a new model using buildmodel() or use load_model to resume training an already trained model
model = buildmodel()
#model = load_model("saved_models/model_updates3900", custom_objects={'logloss': logloss, 'sumofsquares': sumofsquares})
model._make_predict_function()
graph = tf.get_default_graph()
intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer('o_P').output)
a_t[0] = 1 #index 0 = no flap, 1= flap
#output of network represents probability of flap
game_state = []
for i in range(0,THREADS):
game_state.append(game.GameState(30000))
def runprocess(thread_id, s_t):
global T
global a_t
global model
t = 0
t_start = t
terminal = False
r_t = 0
r_store = []
state_store = np.zeros((0, IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS))
output_store = []
critic_store = []
s_t = s_t.reshape(1, s_t.shape[0], s_t.shape[1], s_t.shape[2])
while t-t_start < t_max and terminal == False:
t += 1
T += 1
intermediate_output = 0
with graph.as_default():
out = model.predict(s_t)[0]
intermediate_output = intermediate_layer_model.predict(s_t)
no = np.random.rand()
a_t = [0,1] if no < out else [1,0] #stochastic action
#a_t = [0,1] if 0.5 <y[0] else [1,0] #deterministic action
x_t, r_t, terminal = game_state[thread_id].frame_step(a_t)
x_t = preprocess(x_t)
with graph.as_default():
critic_reward = model.predict(s_t)[1]
y = 0 if a_t[0] == 1 else 1
r_store = np.append(r_store, r_t)
state_store = np.append(state_store, s_t, axis = 0)
output_store = np.append(output_store, y)
critic_store = np.append(critic_store, critic_reward)
s_t = np.append(x_t, s_t[:, :, :, :3], axis=3)
print("Frame = " + str(T) + ", Updates = " + str(EPISODE) + ", Thread = " + str(thread_id) + ", Output = "+ str(intermediate_output))
if terminal == False:
r_store[len(r_store)-1] = critic_store[len(r_store)-1]
else:
r_store[len(r_store)-1] = -1
s_t = np.concatenate((x_t, x_t, x_t, x_t), axis=3)
for i in range(2,len(r_store)+1):
r_store[len(r_store)-i] = r_store[len(r_store)-i] + GAMMA*r_store[len(r_store)-i + 1]
return s_t, state_store, output_store, r_store, critic_store
#function to decrease the learning rate after every epoch. In this manner, the learning rate reaches 0, by 20,000 epochs
def step_decay(epoch):
decay = 3.2e-8
lrate = LEARNING_RATE - epoch*decay
lrate = max(lrate, 0)
return lrate
class actorthread(threading.Thread):
def __init__(self,thread_id, s_t):
threading.Thread.__init__(self)
self.thread_id = thread_id
self.next_state = s_t
def run(self):
global episode_output
global episode_r
global episode_critic
global episode_state
threadLock.acquire()
self.next_state, state_store, output_store, r_store, critic_store = runprocess(self.thread_id, self.next_state)
self.next_state = self.next_state.reshape(self.next_state.shape[1], self.next_state.shape[2], self.next_state.shape[3])
episode_r = np.append(episode_r, r_store)
episode_output = np.append(episode_output, output_store)
episode_state = np.append(episode_state, state_store, axis = 0)
episode_critic = np.append(episode_critic, critic_store)
threadLock.release()
states = np.zeros((0, IMAGE_ROWS, IMAGE_COLS, 4))
#initializing state of each thread
for i in range(0, len(game_state)):
image = game_state[i].getCurrentFrame()
image = preprocess(image)
state = np.concatenate((image, image, image, image), axis=3)
states = np.append(states, state, axis = 0)
while True:
threadLock = threading.Lock()
threads = []
for i in range(0,THREADS):
threads.append(actorthread(i,states[i]))
states = np.zeros((0, IMAGE_ROWS, IMAGE_COLS, 4))
for i in range(0,THREADS):
threads[i].start()
#thread.join() ensures that all threads fininsh execution before proceeding further
for i in range(0,THREADS):
threads[i].join()
for i in range(0,THREADS):
state = threads[i].next_state
state = state.reshape(1, state.shape[0], state.shape[1], state.shape[2])
states = np.append(states, state, axis = 0)
e_mean = np.mean(episode_r)
#advantage calculation for each action taken
advantage = episode_r - episode_critic
print("backpropagating")
lrate = LearningRateScheduler(step_decay)
callbacks_list = [lrate]
weights = {'o_P':advantage, 'o_V':np.ones(len(advantage))}
#backpropagation
history = model.fit(episode_state, [episode_output, episode_r], epochs = EPISODE + 1, batch_size = len(episode_output), callbacks = callbacks_list, sample_weight = weights, initial_epoch = EPISODE)
episode_r = []
episode_output = []
episode_state = np.zeros((0, IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS))
episode_critic = []
f = open("rewards.txt","a")
f.write("Update: " + str(EPISODE) + ", Reward_mean: " + str(e_mean) + ", Loss: " + str(history.history['loss']) + "\n")
f.close()
if EPISODE % 50 == 0:
model.save("saved_models/model_updates" + str(EPISODE))
EPISODE += 1