-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconvcode.py
573 lines (445 loc) · 21 KB
/
convcode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# Authors: Veeresh Taranalli <[email protected]>
# License: BSD 3-Clause
""" Algorithms for Convolutional Codes """
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
import matplotlib.patches as mpatches
from commpy.utilities import dec2bitarray, bitarray2dec, hamming_dist, euclid_dist
#from commpy.channelcoding.acstb import acs_traceback
__all__ = ['Trellis', 'conv_encode', 'viterbi_decode']
class Trellis:
"""
Class defining a Trellis corresponding to a k/n - rate convolutional code.
Parameters
----------
memory : 1D ndarray of ints
Number of memory elements per input of the convolutional encoder.
g_matrix : 2D ndarray of ints (octal representation)
Generator matrix G(D) of the convolutional encoder. Each element of
G(D) represents a polynomial.
feedback : int, optional
Feedback polynomial of the convolutional encoder. Default value is 00.
code_type : {'default', 'rsc'}, optional
Use 'rsc' to generate a recursive systematic convolutional code.
If 'rsc' is specified, then the first 'k x k' sub-matrix of
G(D) must represent a identity matrix along with a non-zero
feedback polynomial.
Attributes
----------
k : int
Size of the smallest block of input bits that can be encoded using
the convolutional code.
n : int
Size of the smallest block of output bits generated using
the convolutional code.
total_memory : int
Total number of delay elements needed to implement the convolutional
encoder.
number_states : int
Number of states in the convolutional code trellis.
number_inputs : int
Number of branches from each state in the convolutional code trellis.
next_state_table : 2D ndarray of ints
Table representing the state transition matrix of the
convolutional code trellis. Rows represent current states and
columns represent current inputs in decimal. Elements represent the
corresponding next states in decimal.
output_table : 2D ndarray of ints
Table representing the output matrix of the convolutional code trellis.
Rows represent current states and columns represent current inputs in
decimal. Elements represent corresponding outputs in decimal.
Examples
--------
>>> from numpy import array
>>> import commpy.channelcoding.convcode as cc
>>> memory = array([2])
>>> g_matrix = array([[0o5, 0o7]]) # G(D) = [1+D^2, 1+D+D^2]
>>> trellis = cc.Trellis(memory, g_matrix)
>>> print trellis.k
1
>>> print trellis.n
2
>>> print trellis.total_memory
2
>>> print trellis.number_states
4
>>> print trellis.number_inputs
2
>>> print trellis.next_state_table
[[0 2]
[0 2]
[1 3]
[1 3]]
>>>print trellis.output_table
[[0 3]
[3 0]
[1 2]
[2 1]]
"""
def __init__(self, memory, g_matrix, feedback = 0, code_type = 'default'):
[self.k, self.n] = g_matrix.shape
if code_type == 'rsc':
for i in range(self.k):
g_matrix[i][i] = feedback
self.total_memory = memory.sum()
self.number_states = pow(2, self.total_memory)
self.number_inputs = pow(2, self.k)
self.next_state_table = np.zeros([self.number_states,
self.number_inputs], 'int')
self.output_table = np.zeros([self.number_states,
self.number_inputs], 'int')
# Compute the entries in the next state table and the output table
for current_state in range(self.number_states):
for current_input in range(self.number_inputs):
outbits = np.zeros(self.n, 'int')
# Compute the values in the output_table
for r in range(self.n):
output_generator_array = np.zeros(self.k, 'int')
shift_register = dec2bitarray(current_state,
self.total_memory)
for l in range(self.k):
# Convert the number representing a polynomial into a
# bit array
generator_array = dec2bitarray(g_matrix[l][r],
memory[l]+1)
# Loop over M delay elements of the shift register
# to compute their contribution to the r-th output
for i in range(memory[l]):
outbits[r] = (outbits[r] + \
(shift_register[i+l]*generator_array[i+1])) % 2
output_generator_array[l] = generator_array[0]
if l == 0:
feedback_array = (dec2bitarray(feedback, memory[l]) * shift_register[0:memory[l]]).sum()
shift_register[1:memory[l]] = \
shift_register[0:memory[l]-1]
shift_register[0] = (dec2bitarray(current_input,
self.k)[0] + feedback_array) % 2
else:
feedback_array = (dec2bitarray(feedback, memory[l]) *
shift_register[l+memory[l-1]-1:l+memory[l-1]+memory[l]-1]).sum()
shift_register[l+memory[l-1]:l+memory[l-1]+memory[l]-1] = \
shift_register[l+memory[l-1]-1:l+memory[l-1]+memory[l]-2]
shift_register[l+memory[l-1]-1] = \
(dec2bitarray(current_input, self.k)[l] + feedback_array) % 2
# Compute the contribution of the current_input to output
outbits[r] = (outbits[r] + \
(np.sum(dec2bitarray(current_input, self.k) * \
output_generator_array + feedback_array) % 2)) % 2
# Update the ouput_table using the computed output value
self.output_table[current_state][current_input] = \
bitarray2dec(outbits)
# Update the next_state_table using the new state of
# the shift register
self.next_state_table[current_state][current_input] = \
bitarray2dec(shift_register)
def _generate_grid(self, trellis_length):
""" Private method """
grid = np.mgrid[0.12:0.22*trellis_length:(trellis_length+1)*(0+1j),
0.1:0.1+self.number_states*0.1:self.number_states*(0+1j)].reshape(2, -1)
return grid
def _generate_states(self, trellis_length, grid, state_order, state_radius, font):
""" Private method """
state_patches = []
for state_count in range(self.number_states * trellis_length):
state_patch = mpatches.Circle(grid[:,state_count], state_radius,
color="#003399", ec="#cccccc")
state_patches.append(state_patch)
plt.text(grid[0, state_count], grid[1, state_count]-0.02,
str(state_order[state_count % self.number_states]),
ha="center", family=font, size=20, color="#ffffff")
return state_patches
def _generate_edges(self, trellis_length, grid, state_order, state_radius, edge_colors):
""" Private method """
edge_patches = []
for current_time_index in range(trellis_length-1):
grid_subset = grid[:,self.number_states * current_time_index:]
for state_count_1 in range(self.number_states):
input_count = 0
for state_count_2 in range(self.number_states):
dx = grid_subset[0, state_count_2+self.number_states] - grid_subset[0,state_count_1] - 2*state_radius
dy = grid_subset[1, state_count_2+self.number_states] - grid_subset[1,state_count_1]
if np.count_nonzero(self.next_state_table[state_order[state_count_1],:] == state_order[state_count_2]):
found_index = np.where(self.next_state_table[state_order[state_count_1],:] ==
state_order[state_count_2])
edge_patch = mpatches.FancyArrow(grid_subset[0,state_count_1]+state_radius,
grid_subset[1,state_count_1], dx, dy, width=0.005,
length_includes_head = True, color = edge_colors[found_index[0][0]])
edge_patches.append(edge_patch)
input_count = input_count + 1
return edge_patches
def _generate_labels(self, grid, state_order, state_radius, font):
""" Private method """
for state_count in range(self.number_states):
for input_count in range(self.number_inputs):
edge_label = str(input_count) + "/" + str(
self.output_table[state_order[state_count], input_count])
plt.text(grid[0, state_count]-1.5*state_radius,
grid[1, state_count]+state_radius*(1-input_count-0.7),
edge_label, ha="center", family=font, size=14)
def visualize(self, trellis_length = 2, state_order = None,
state_radius = 0.04, edge_colors = None):
""" Plot the trellis diagram.
Parameters
----------
trellis_length : int, optional
Specifies the number of time steps in the trellis diagram.
Default value is 2.
state_order : list of ints, optional
Specifies the order in the which the states of the trellis
are to be displayed starting from the top in the plot.
Default order is [0,...,number_states-1]
state_radius : float, optional
Radius of each state (circle) in the plot.
Default value is 0.04
edge_colors = list of hex color codes, optional
A list of length equal to the number_inputs,
containing color codes that represent the edge corresponding
to the input.
"""
if edge_colors is None:
edge_colors = ["#9E1BE0", "#06D65D"]
if state_order is None:
state_order = list(range(self.number_states))
font = "sans-serif"
fig = plt.figure()
ax = plt.axes([0,0,1,1])
trellis_patches = []
state_order.reverse()
trellis_grid = self._generate_grid(trellis_length)
state_patches = self._generate_states(trellis_length, trellis_grid,
state_order, state_radius, font)
edge_patches = self._generate_edges(trellis_length, trellis_grid,
state_order, state_radius,
edge_colors)
self._generate_labels(trellis_grid, state_order, state_radius, font)
trellis_patches.extend(state_patches)
trellis_patches.extend(edge_patches)
collection = PatchCollection(trellis_patches, match_original=True)
ax.add_collection(collection)
ax.set_xticks([])
ax.set_yticks([])
#plt.legend([edge_patches[0], edge_patches[1]], ["1-input", "0-input"])
plt.show()
def conv_encode(message_bits, trellis, code_type = 'default', puncture_matrix=None):
"""
Encode bits using a convolutional code.
Parameters
----------
message_bits : 1D ndarray containing {0, 1}
Stream of bits to be convolutionally encoded.
generator_matrix : 2-D ndarray of ints
Generator matrix G(D) of the convolutional code using which the input
bits are to be encoded.
M : 1D ndarray of ints
Number of memory elements per input of the convolutional encoder.
Returns
-------
coded_bits : 1D ndarray containing {0, 1}
Encoded bit stream.
"""
k = trellis.k
n = trellis.n
total_memory = trellis.total_memory
rate = float(k)/n
if puncture_matrix is None:
puncture_matrix = np.ones((trellis.k, trellis.n))
number_message_bits = np.size(message_bits)
# Initialize an array to contain the message bits plus the truncation zeros
if code_type == 'default':
inbits = np.zeros(number_message_bits + total_memory + total_memory % k,
'int')
number_inbits = number_message_bits + total_memory + total_memory % k
# Pad the input bits with M zeros (L-th terminated truncation)
inbits[0:number_message_bits] = message_bits
number_outbits = int(number_inbits/rate)
else:
inbits = message_bits
number_inbits = number_message_bits
number_outbits = int((number_inbits + total_memory)/rate)
outbits = np.zeros(number_outbits, 'int')
p_outbits = np.zeros(int(number_outbits*
puncture_matrix[0:].sum()/np.size(puncture_matrix, 1)), 'int')
next_state_table = trellis.next_state_table
output_table = trellis.output_table
# Encoding process - Each iteration of the loop represents one clock cycle
current_state = 0
j = 0
for i in range(int(number_inbits/k)): # Loop through all input bits
current_input = bitarray2dec(inbits[i*k:(i+1)*k])
current_output = output_table[current_state][current_input]
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
current_state = next_state_table[current_state][current_input]
j += 1
if code_type == 'rsc':
term_bits = dec2bitarray(current_state, trellis.total_memory)
term_bits = term_bits[::-1]
for i in range(trellis.total_memory):
current_input = bitarray2dec(term_bits[i*k:(i+1)*k])
current_output = output_table[current_state][current_input]
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
current_state = next_state_table[current_state][current_input]
j += 1
j = 0
for i in range(number_outbits):
if puncture_matrix[0][i % np.size(puncture_matrix, 1)] == 1:
p_outbits[j] = outbits[i]
j = j + 1
return p_outbits
def _where_c(inarray, rows, cols, search_value, index_array):
#cdef int i, j,
number_found = 0
for i in range(rows):
for j in range(cols):
if inarray[i, j] == search_value:
index_array[number_found, 0] = i
index_array[number_found, 1] = j
number_found += 1
return number_found
def _acs_traceback(r_codeword, trellis, decoding_type,
path_metrics, paths, decoded_symbols,
decoded_bits, tb_count, t, count,
tb_depth, current_number_states):
#cdef int state_num, i, j, number_previous_states, previous_state, \
# previous_input, i_codeword, number_found, min_idx, \
# current_state, dec_symbol
k = trellis.k
n = trellis.n
number_states = trellis.number_states
number_inputs = trellis.number_inputs
branch_metric = 0.0
next_state_table = trellis.next_state_table
output_table = trellis.output_table
pmetrics = np.empty(number_inputs)
i_codeword_array = np.empty(n, 'int')
index_array = np.empty([number_states, 2], 'int')
decoded_bitarray = np.empty(k, 'int')
# Loop over all the current states (Time instant: t)
for state_num in range(current_number_states):
# Using the next state table find the previous states and inputs
# leading into the current state (Trellis)
number_found = _where_c(next_state_table, number_states, number_inputs, state_num, index_array)
# Loop over all the previous states (Time instant: t-1)
for i in range(number_found):
previous_state = index_array[i, 0]
previous_input = index_array[i, 1]
# Using the output table, find the ideal codeword
i_codeword = output_table[previous_state, previous_input]
#dec2bitarray_c(i_codeword, n, i_codeword_array)
i_codeword_array = dec2bitarray(i_codeword, n)
# Compute Branch Metrics
if decoding_type == 'hard':
#branch_metric = hamming_dist_c(r_codeword.astype(int), i_codeword_array.astype(int), n)
branch_metric = hamming_dist(r_codeword.astype(int), i_codeword_array.astype(int))
elif decoding_type == 'soft':
pass
elif decoding_type == 'unquantized':
i_codeword_array = 2*i_codeword_array - 1
branch_metric = euclid_dist(r_codeword, i_codeword_array)
else:
pass
# ADD operation: Add the branch metric to the
# accumulated path metric and store it in the temporary array
pmetrics[i] = path_metrics[previous_state, 0] + branch_metric
# COMPARE and SELECT operations
# Compare and Select the minimum accumulated path metric
path_metrics[state_num, 1] = pmetrics.min()
# Store the previous state corresponding to the minimum
# accumulated path metric
min_idx = pmetrics.argmin()
paths[state_num, tb_count] = index_array[min_idx, 0]
# Store the previous input corresponding to the minimum
# accumulated path metric
decoded_symbols[state_num, tb_count] = index_array[min_idx, 1]
if t >= tb_depth - 1:
current_state = path_metrics[:,1].argmin()
# Traceback Loop
for j in reversed(range(1, tb_depth)):
dec_symbol = decoded_symbols[current_state, j]
previous_state = paths[current_state, j]
decoded_bitarray = dec2bitarray(dec_symbol, k)
decoded_bits[(t-tb_depth-1)+(j+1)*k+count:(t-tb_depth-1)+(j+2)*k+count] = \
decoded_bitarray
current_state = previous_state
paths[:,0:tb_depth-1] = paths[:,1:]
decoded_symbols[:,0:tb_depth-1] = decoded_symbols[:,1:]
def viterbi_decode(coded_bits, trellis, tb_depth=None, decoding_type='hard'):
"""
Decodes a stream of convolutionally encoded bits using the Viterbi Algorithm
Parameters
----------
coded_bits : 1D ndarray
Stream of convolutionally encoded bits which are to be decoded.
generator_matrix : 2D ndarray of ints
Generator matrix G(D) of the convolutional code using which the
input bits are to be decoded.
M : 1D ndarray of ints
Number of memory elements per input of the convolutional encoder.
tb_length : int
Traceback depth (Typically set to 5*(M+1)).
decoding_type : str {'hard', 'unquantized'}
The type of decoding to be used.
'hard' option is used for hard inputs (bits) to the decoder, e.g., BSC channel.
'unquantized' option is used for soft inputs (real numbers) to the decoder, e.g., BAWGN channel.
Returns
-------
decoded_bits : 1D ndarray
Decoded bit stream.
References
----------
.. [1] Todd K. Moon. Error Correction Coding: Mathematical Methods and
Algorithms. John Wiley and Sons, 2005.
"""
# k = Rows in G(D), n = columns in G(D)
k = trellis.k
n = trellis.n
rate = float(k)/n
total_memory = trellis.total_memory
number_states = trellis.number_states
number_inputs = trellis.number_inputs
if tb_depth is None:
tb_depth = 5*total_memory
next_state_table = trellis.next_state_table
output_table = trellis.output_table
# Number of message bits after decoding
L = int(len(coded_bits)*rate)
path_metrics = np.empty([number_states, 2])
path_metrics[:, :] = 1000000
path_metrics[0][0] = 0
paths = np.empty([number_states, tb_depth], 'int')
paths[:, :] = 1000000
paths[0][0] = 0
decoded_symbols = np.zeros([number_states, tb_depth], 'int')
decoded_bits = np.zeros(L+tb_depth+k, 'int')
r_codeword = np.zeros(n, 'int')
tb_count = 1
count = 0
current_number_states = number_states
for t in range(1, int((L+total_memory+total_memory%k)/k) + 1):
# Get the received codeword corresponding to t
if t <= L:
r_codeword = coded_bits[(t-1)*n:t*n]
else:
if decoding_type == 'hard':
r_codeword[:] = 0
elif decoding_type == 'soft':
pass
elif decoding_type == 'unquantized':
r_codeword[:] = 0
r_codeword = 2*r_codeword - 1
else:
pass
_acs_traceback(r_codeword, trellis, decoding_type, path_metrics, paths,
decoded_symbols, decoded_bits, tb_count, t, count, tb_depth,
current_number_states)
if t >= tb_depth - 1:
tb_count = tb_depth - 1
count = count + k - 1
else:
tb_count = tb_count + 1
# Path metrics (at t-1) = Path metrics (at t)
path_metrics[:, 0] = path_metrics[:, 1]
# Force all the paths back to '0' state at the end of decoding
if t == (L+total_memory+total_memory%k)/k:
current_number_states = 1
return decoded_bits[0:len(decoded_bits)-tb_depth-1]