From be6f47a333c9f53aaaee9cd20e56c3d82339bc00 Mon Sep 17 00:00:00 2001 From: shadowcz007 Date: Thu, 1 Aug 2024 21:03:40 +0800 Subject: [PATCH] =?UTF-8?q?batch=20prompt=20:=E6=89=B9=E9=87=8F=E6=8F=90?= =?UTF-8?q?=E7=A4=BA?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 4 +- __init__.py | 221 +++++---- nodes/ChatGPT.py | 121 ++--- pyproject.toml | 2 +- web/ar.html | 22 + web/index.html | 936 +++++++++++------------------------- web/javascript/command.js | 680 ++++++++++++++++++++++++++ web/javascript/ui_mixlab.js | 63 +-- 8 files changed, 1191 insertions(+), 858 deletions(-) create mode 100644 web/ar.html create mode 100644 web/javascript/command.js diff --git a/README.md b/README.md index 8cd8aef4..73eebabe 100644 --- a/README.md +++ b/README.md @@ -115,7 +115,7 @@ https://github.com/shadowcz007/comfyui-mixlab-nodes/assets/12645064/e7e77f90-e43 [workflow-5](./workflow/5-gpt-workflow.json) -最新:ChatGPT 节点支持 Local LLM(llama.cpp),Phi3、llama3 都可以直接一个节点运行了。 + ## Prompt diff --git a/__init__.py b/__init__.py index d96c20e6..80357d37 100644 --- a/__init__.py +++ b/__init__.py @@ -26,12 +26,12 @@ llama_model="" llama_chat_format="" -try: - from .nodes.ChatGPT import get_llama_models,get_llama_model_path,llama_cpp_client - llama_cpp_client("") +# try: +# from .nodes.ChatGPT import get_llama_models,get_llama_model_path,llama_cpp_client +# llama_cpp_client("") -except: - print("##nodes.ChatGPT ImportError") +# except: +# print("##nodes.ChatGPT ImportError") from .nodes.RembgNode import get_rembg_models,U2NET_HOME,run_briarmbg,run_rembg @@ -679,11 +679,11 @@ async def get_checkpoints(request): except Exception as e: print('/mixlab/folder_paths',False,e) - try: - if data['type']=='llamafile': - names=get_llama_models() - except: - print("llamafile none") + # try: + # if data['type']=='llamafile': + # names=get_llama_models() + # except: + # print("llamafile none") try: if data['type']=='rembg': @@ -860,117 +860,128 @@ async def mixlab_post_prompt(request): return web.json_response({"error": "no prompt", "node_errors": []}, status=400) +# AR页面 +# @routes.get('/mixlab/AR') +async def handle_ar_page(request): + html_file = os.path.join(current_path, "web/ar.html") + if os.path.exists(html_file): + with open(html_file, 'r', encoding='utf-8', errors='ignore') as f: + html_data = f.read() + return web.Response(text=html_data, content_type='text/html') + else: + return web.Response(text="HTML file not found", status=404) -async def start_local_llm(data): - global llama_port,llama_model,llama_chat_format - if llama_port and llama_model and llama_chat_format: - return {"port":llama_port,"model":llama_model,"chat_format":llama_chat_format} - import threading - import uvicorn - from llama_cpp.server.app import create_app - from llama_cpp.server.settings import ( - Settings, - ServerSettings, - ModelSettings, - ConfigFileSettings, - ) +# async def start_local_llm(data): +# global llama_port,llama_model,llama_chat_format +# if llama_port and llama_model and llama_chat_format: +# return {"port":llama_port,"model":llama_model,"chat_format":llama_chat_format} + +# import threading +# import uvicorn +# from llama_cpp.server.app import create_app +# from llama_cpp.server.settings import ( +# Settings, +# ServerSettings, +# ModelSettings, +# ConfigFileSettings, +# ) - if not "model" in data and "model_path" in data: - data['model']= os.path.basename(data["model_path"]) - model=data["model_path"] +# if not "model" in data and "model_path" in data: +# data['model']= os.path.basename(data["model_path"]) +# model=data["model_path"] - elif "model" in data: - model=get_llama_model_path(data['model']) +# elif "model" in data: +# model=get_llama_model_path(data['model']) - n_gpu_layers=-1 +# n_gpu_layers=-1 - if "n_gpu_layers" in data: - n_gpu_layers=data['n_gpu_layers'] +# if "n_gpu_layers" in data: +# n_gpu_layers=data['n_gpu_layers'] - chat_format="chatml" +# chat_format="chatml" - model_alias=os.path.basename(model) +# model_alias=os.path.basename(model) - # 多模态 - clip_model_path=None +# # 多模态 +# clip_model_path=None - prefix = "llava-phi-3-mini" - file_name = prefix+"-mmproj-" - if model_alias.startswith(prefix): - for file in os.listdir(os.path.dirname(model)): - if file.startswith(file_name): - clip_model_path=os.path.join(os.path.dirname(model),file) - chat_format='llava-1-5' - # print('#clip_model_path',chat_format,clip_model_path,model) - - address="127.0.0.1" - port=9090 - success = False - for i in range(11): # 尝试最多11次 - if await check_port_available(address, port + i): - port = port + i - success = True - break - - if success == False: - return {"port":None,"model":""} +# prefix = "llava-phi-3-mini" +# file_name = prefix+"-mmproj-" +# if model_alias.startswith(prefix): +# for file in os.listdir(os.path.dirname(model)): +# if file.startswith(file_name): +# clip_model_path=os.path.join(os.path.dirname(model),file) +# chat_format='llava-1-5' +# # print('#clip_model_path',chat_format,clip_model_path,model) + +# address="127.0.0.1" +# port=9090 +# success = False +# for i in range(11): # 尝试最多11次 +# if await check_port_available(address, port + i): +# port = port + i +# success = True +# break + +# if success == False: +# return {"port":None,"model":""} - server_settings=ServerSettings(host=address,port=port) - - name, ext = os.path.splitext(os.path.basename(model)) - if name: - # print('#model',name) - app = create_app( - server_settings=server_settings, - model_settings=[ - ModelSettings( - model=model, - model_alias=name, - n_gpu_layers=n_gpu_layers, - n_ctx=4098, - chat_format=chat_format, - embedding=False, - clip_model_path=clip_model_path - )]) - - def run_uvicorn(): - uvicorn.run( - app, - host=os.getenv("HOST", server_settings.host), - port=int(os.getenv("PORT", server_settings.port)), - ssl_keyfile=server_settings.ssl_keyfile, - ssl_certfile=server_settings.ssl_certfile, - ) - - # 创建一个子线程 - thread = threading.Thread(target=run_uvicorn) - - # 启动子线程 - thread.start() - - llama_port=port - llama_model=data['model'] - llama_chat_format=chat_format - - return {"port":llama_port,"model":llama_model,"chat_format":llama_chat_format} +# server_settings=ServerSettings(host=address,port=port) + +# name, ext = os.path.splitext(os.path.basename(model)) +# if name: +# # print('#model',name) +# app = create_app( +# server_settings=server_settings, +# model_settings=[ +# ModelSettings( +# model=model, +# model_alias=name, +# n_gpu_layers=n_gpu_layers, +# n_ctx=4098, +# chat_format=chat_format, +# embedding=False, +# clip_model_path=clip_model_path +# )]) + +# def run_uvicorn(): +# uvicorn.run( +# app, +# host=os.getenv("HOST", server_settings.host), +# port=int(os.getenv("PORT", server_settings.port)), +# ssl_keyfile=server_settings.ssl_keyfile, +# ssl_certfile=server_settings.ssl_certfile, +# ) + +# # 创建一个子线程 +# thread = threading.Thread(target=run_uvicorn) + +# # 启动子线程 +# thread.start() + +# llama_port=port +# llama_model=data['model'] +# llama_chat_format=chat_format + +# return {"port":llama_port,"model":llama_model,"chat_format":llama_chat_format} # llam服务的开启 -@routes.post('/mixlab/start_llama') -async def my_hander_method(request): - data =await request.json() - # print(data) - if llama_port and llama_model and llama_chat_format: - return web.json_response({"port":llama_port,"model":llama_model,"chat_format":llama_chat_format} ) - try: - result=await start_local_llm(data) - except: - result= {"port":None,"model":"","llama_cpp_error":True} - print('start_local_llm error') +# @routes.post('/mixlab/start_llama') +# async def my_hander_method(request): +# data =await request.json() +# # print(data) +# if llama_port and llama_model and llama_chat_format: +# return web.json_response({"port":llama_port,"model":llama_model,"chat_format":llama_chat_format} ) +# try: +# result=await start_local_llm(data) +# except: +# result= {"port":None,"model":"","llama_cpp_error":True} +# print('start_local_llm error') - return web.json_response(result) +# return web.json_response(result) # 重启服务 @routes.post('/mixlab/re_start') diff --git a/nodes/ChatGPT.py b/nodes/ChatGPT.py index 88810c96..2d9ca946 100644 --- a/nodes/ChatGPT.py +++ b/nodes/ChatGPT.py @@ -97,67 +97,68 @@ def get_llama_path(): except: return os.path.join(folder_paths.models_dir, "llamafile") -def get_llama_models(): - res=[] - - model_path=get_llama_path() - if os.path.exists(model_path): - files = os.listdir(model_path) - for file in files: - if os.path.isfile(os.path.join(model_path, file)): - res.append(file) - res=phi_sort(res) - return res - -llama_modes_list=get_llama_models() - -def get_llama_model_path(file_name): - model_path=get_llama_path() - mp=os.path.join(model_path,file_name) - return mp - -def llama_cpp_client(file_name): - try: - if is_installed('llama_cpp')==False: - import subprocess - - # 安装 - print('#pip install llama-cpp-python') +# def get_llama_models(): +# res=[] + +# model_path=get_llama_path() +# if os.path.exists(model_path): +# files = os.listdir(model_path) +# for file in files: +# if os.path.isfile(os.path.join(model_path, file)): +# res.append(file) +# res=phi_sort(res) +# return res + +# llama_modes_list=get_llama_models() +# llama_modes_list=[] + +# def get_llama_model_path(file_name): +# model_path=get_llama_path() +# mp=os.path.join(model_path,file_name) +# return mp + +# def llama_cpp_client(file_name): +# try: +# if is_installed('llama_cpp')==False: +# import subprocess + +# # 安装 +# print('#pip install llama-cpp-python') - result = subprocess.run([sys.executable, '-s', '-m', 'pip', - 'install', - 'llama-cpp-python', - '--extra-index-url', - 'https://abetlen.github.io/llama-cpp-python/whl/cu121' - ], capture_output=True, text=True) - - #检查命令执行结果 - if result.returncode == 0: - print("#install success") - from llama_cpp import Llama - - subprocess.run([sys.executable, '-s', '-m', 'pip', - 'install', - 'llama-cpp-python[server]' - ], capture_output=True, text=True) - - else: - print("#install error") +# result = subprocess.run([sys.executable, '-s', '-m', 'pip', +# 'install', +# 'llama-cpp-python', +# '--extra-index-url', +# 'https://abetlen.github.io/llama-cpp-python/whl/cu121' +# ], capture_output=True, text=True) + +# #检查命令执行结果 +# if result.returncode == 0: +# print("#install success") +# from llama_cpp import Llama + +# subprocess.run([sys.executable, '-s', '-m', 'pip', +# 'install', +# 'llama-cpp-python[server]' +# ], capture_output=True, text=True) + +# else: +# print("#install error") - else: - from llama_cpp import Llama - except: - print("#install llama-cpp-python error") +# else: +# from llama_cpp import Llama +# except: +# print("#install llama-cpp-python error") - if file_name: - mp=get_llama_model_path(file_name) - # file_name=get_llama_models()[0] - # model_path=os.path.join(folder_paths.models_dir, "llamafile") - # mp=os.path.join(model_path,file_name) +# if file_name: +# mp=get_llama_model_path(file_name) +# # file_name=get_llama_models()[0] +# # model_path=os.path.join(folder_paths.models_dir, "llamafile") +# # mp=os.path.join(model_path,file_name) - llm = Llama(model_path=mp, chat_format="chatml",n_gpu_layers=-1,n_ctx=512) +# llm = Llama(model_path=mp, chat_format="chatml",n_gpu_layers=-1,n_ctx=512) - return llm +# return llm @@ -215,7 +216,7 @@ def __init__(self): @classmethod def INPUT_TYPES(cls): - model_list=llama_modes_list+[ + model_list=[ "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4o", @@ -299,9 +300,9 @@ def generate_contextual_text(self, if model == "glm-4" : client = ZhipuAI_client(api_key) # 使用 Zhipuai 的接口 print('using Zhipuai interface') - elif model in llama_modes_list: - # - client=llama_cpp_client(model) + # elif model in llama_modes_list: + # # + # client=llama_cpp_client(model) else : client = openai_client(api_key,api_url) # 使用 ChatGPT 的接口 # print('using ChatGPT interface',api_key,api_url) diff --git a/pyproject.toml b/pyproject.toml index b3d26c46..34cf62a9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,7 +1,7 @@ [project] name = "comfyui-mixlab-nodes" description = "3D, ScreenShareNode & FloatingVideoNode, SpeechRecognition & SpeechSynthesis, GPT, LoadImagesFromLocal, Layers, Other Nodes, ..." -version = "0.32.0" +version = "0.33.0" license = "MIT" dependencies = ["numpy", "pyOpenSSL", "watchdog", "opencv-python-headless", "matplotlib", "openai", "simple-lama-inpainting", "clip-interrogator==0.6.0", "transformers>=4.36.0", "lark-parser", "imageio-ffmpeg", "rembg[gpu]", "omegaconf==2.3.0", "Pillow>=9.5.0", "einops==0.7.0", "trimesh>=4.0.5", "huggingface-hub", "scikit-image"] diff --git a/web/ar.html b/web/ar.html new file mode 100644 index 00000000..dab595d2 --- /dev/null +++ b/web/ar.html @@ -0,0 +1,22 @@ + + + + + + + Mixlab AR + + + + + + + + + \ No newline at end of file diff --git a/web/index.html b/web/index.html index 906cd0c2..eede765b 100644 --- a/web/index.html +++ b/web/index.html @@ -146,6 +146,11 @@ margin-top: 4px; } + .prompt_lab { + font-size: 12px; + margin-top: 4px; + } + .description { display: flex; @@ -295,6 +300,17 @@ border: 3px solid; } + .run_btn:hover { + border-color: yellow !important; + cursor: pointer; + } + + .mix_on { + color: #ffffff !important; + /* font-weight: 400; */ + background: #232222; + } + button:hover { /* border-color: yellow !important; */ color: #ffffff !important; @@ -303,6 +319,7 @@ cursor: pointer; } + .disabled { background-color: #eee !important; color: #4a4a4a !important; @@ -508,36 +525,7 @@ import PhotoSwipeLightbox from '/extensions/comfyui-mixlab-nodes/lib/photoswipe-lightbox.esm.min.js' // console.log(Lightbox) import { api } from "../../../scripts/api.js"; - - - // ComfyUI\web\extensions\core\dynamicPrompts.js - // 官方实现修改 - // Allows for simple dynamic prompt replacement - // Inputs in the format {a|b} will have a random value of a or b chosen when the prompt is queued. - - /* - * Strips C-style line and block comments from a string - */ - function stripComments(str) { - return str.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g, ''); - } - - function dynamicPrompts(prompt) { - prompt = stripComments(prompt); - while (prompt.replace("\\{", "").includes("{") && prompt.replace("\\}", "").includes("}")) { - const startIndex = prompt.replace("\\{", "00").indexOf("{"); - const endIndex = prompt.replace("\\}", "00").indexOf("}"); - - const optionsString = prompt.substring(startIndex + 1, endIndex); - const options = optionsString.split("|"); - - const randomIndex = Math.floor(Math.random() * options.length); - const randomOption = options[randomIndex]; - - prompt = prompt.substring(0, startIndex) + randomOption + prompt.substring(endIndex + 1); - } - return prompt - } + import Command from '/extensions/comfyui-mixlab-nodes/javascript/command.js' // console.log('api', api) @@ -545,93 +533,6 @@ '' - function get_url() { - let api_host = `${window.location.hostname}:${window.location.port}` - let api_base = '' - let url = `${window.location.protocol}//${api_host}${api_base}` - return url - } - - async function uploadImage(blob, fileType = '.png', filename) { - const body = new FormData() - body.append( - 'image', - new File([blob], (filename || new Date().getTime()) + fileType) - ) - - const url = get_url() - - const resp = await fetch(`${url}/upload/image`, { - method: 'POST', - body - }) - - let data = await resp.json() - // console.log(data) - let { name, subfolder } = data - let src = `${url}/view?filename=${encodeURIComponent( - name - )}&type=input&subfolder=${subfolder}&rand=${Math.random()}` - - return { url: src, name } - - }; - - async function uploadMask(arrayBuffer, imgurl) { - const body = new FormData() - const filename = 'clipspace-mask-' + performance.now() + '.png' - - let original_url = new URL(imgurl) - - const original_ref = { filename: original_url.searchParams.get('filename') } - - let original_subfolder = original_url.searchParams.get('subfolder') - if (original_subfolder) original_ref.subfolder = original_subfolder - - let original_type = original_url.searchParams.get('type') - if (original_type) original_ref.type = original_type - - body.append('image', arrayBuffer, filename) - body.append('original_ref', JSON.stringify(original_ref)) - body.append('type', 'input') - body.append('subfolder', 'clipspace') - - const url = get_url() - - const resp = await fetch(`${url}/upload/mask`, { - method: 'POST', - body - }) - - // console.log(resp) - let data = await resp.json() - let { name, subfolder, type } = data - let src = `${url}/view?filename=${encodeURIComponent( - name - )}&type=${type}&subfolder=${subfolder}&rand=${Math.random()}` - - return { url: src, name: 'clipspace/' + name } - } - - - const parseImageToBase64 = url => { - return new Promise((res, rej) => { - fetch(url) - .then(response => response.blob()) - .then(blob => { - const reader = new FileReader() - reader.onloadend = () => { - const base64data = reader.result - res(base64data) - // 在这里可以将base64数据用于进一步处理或显示图片 - } - reader.readAsDataURL(blob) - }) - .catch(error => { - console.log('发生错误:', error) - }) - }) - } //给load image to batch节点使用的输入 function createBase64ImageForLoadImageToBatch(imageElement, nodeId, bs) { @@ -663,125 +564,6 @@ }) } - const blobToBase64 = blob => { - return new Promise((res, rej) => { - const reader = new FileReader() - reader.onloadend = () => { - const base64data = reader.result - res(base64data) - // 在这里可以将base64数据用于进一步处理或显示图片 - } - reader.readAsDataURL(blob) - }) - } - - - function base64ToBlob(base64) { - // 去除base64编码中的前缀 - const base64WithoutPrefix = base64.replace(/^data:image\/\w+;base64,/, ''); - - // 将base64编码转换为字节数组 - const byteCharacters = atob(base64WithoutPrefix); - - // 创建一个存储字节数组的数组 - const byteArrays = []; - - // 将字节数组放入数组中 - for (let offset = 0; offset < byteCharacters.length; offset += 1024) { - const slice = byteCharacters.slice(offset, offset + 1024); - - const byteNumbers = new Array(slice.length); - for (let i = 0; i < slice.length; i++) { - byteNumbers[i] = slice.charCodeAt(i); - } - - const byteArray = new Uint8Array(byteNumbers); - byteArrays.push(byteArray); - } - - // 创建blob对象 - const blob = new Blob(byteArrays, { type: 'image/png' }); // 根据实际情况设置MIME类型 - - return blob; - } - - - // 获取 rembg 模型 - async function get_rembg_models() { - try { - const response = await fetch(`${get_url()}/mixlab/folder_paths`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - type: 'rembg' - }) - }) - - const data = await response.json() - // console.log(data) - return data.names - } catch (error) { - console.error(error) - } - } - - //自动抠图 - async function run_rembg(model, base64) { - try { - const response = await fetch(`${get_url()}/mixlab/rembg`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - model, - base64 - }) - }) - - const data = await response.json() - // console.log(data) - return data.data - } catch (error) { - console.error(error) - } - } - - function convertImageToBlackBasedOnAlpha(image) { - const canvas = document.createElement('canvas'); - const ctx = canvas.getContext('2d'); - - // Draw the image onto the canvas - canvas.width = image.width; - canvas.height = image.height; - ctx.drawImage(image, 0, 0); - - // Get the image data from the canvas - const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); - const pixels = imageData.data; - - // Modify the RGB values based on the alpha channel - for (let i = 0; i < pixels.length; i += 4) { - const alpha = pixels[i + 3]; - if (alpha !== 0) { - // Set non-transparent pixels to black - pixels[i] = 0; // Red - pixels[i + 1] = 0; // Green - pixels[i + 2] = 0; // Blue - } - } - - // Put the modified image data back onto the canvas - ctx.putImageData(imageData, 0, 0); - - // Convert the modified canvas to base64 data URL - const base64ImageData = canvas.toDataURL('image/png'); // Replace 'png' with your desired image format - - return base64ImageData; - } - // 图像编辑 @@ -883,7 +665,7 @@ let autoMaskSelect = iframe.contentDocument.getElementById('automask_image_mixlab'); const select = iframe.contentDocument.getElementById('automask_models_mixlab'); if (select.children.length === 0) { - let rembgModels = await get_rembg_models() + let rembgModels = await Command.get_rembg_models() // 遍历模型列表并创建选项 for (const model of rembgModels) { const option = document.createElement('option'); @@ -899,16 +681,16 @@ let base64 = getImageBase64FromLayer() resetLayer() - let res = await run_rembg(select.value, base64) + let res = await Command.run_rembg(select.value, base64) const match = res.match(/^data:image\/(\w+);base64,/); if (!match) { res = 'data:image/png;base64,' + res } - let image = await createImage(res) + let image = await Command.createImage(res) - let mb = convertImageToBlackBasedOnAlpha(image) - let mask = await createImage(mb) + let mb = Command.convertImageToBlackBasedOnAlpha(image) + let mask = await Command.createImage(mb) let id = Layers.auto_increment; addImage(id, 'Mask_' + data.id + id, mask) }) @@ -979,9 +761,9 @@ // console.log(base64); editor.style.display = 'none'; - let fileBlob = base64ToBlob(base64) + let fileBlob = Command.base64ToBlob(base64) // // 获取读取的文件内容,即 Blob 对象 - let hashId = await calculateImageHash(fileBlob) + let hashId = await Command.calculateImageHash(fileBlob) if (window._appData.data && hashId == window._appData.data[data.id].hashId) { document.body.querySelector('.app').style.display = 'flex' @@ -990,9 +772,9 @@ } //底图 - const { url: imgurl } = await uploadImage(base64ToBlob(data.options.defaultImage)) + const { url: imgurl } = await Command.uploadImage(Command.base64ToBlob(data.options.defaultImage)) //mask - let { url, name } = await uploadMask(fileBlob, imgurl); + let { url, name } = await Command.uploadMask(fileBlob, imgurl); // 在这里可以对 Blob 对象进行进一步处理 // imageElement.src = url; if (window._appData.data && window._appData.data[data.id]) window._appData.data[data.id].inputs.image = name; @@ -1013,12 +795,12 @@ const ctx = canvas.getContext('2d'); - const defaultImage = await createImage(data.options.defaultImage) + const defaultImage = await Command.createImage(data.options.defaultImage) ctx.drawImage(defaultImage, 0, 0, dim.width, dim.height); // 绘制base64图片 // const base64Image = base64 - const base64ImageObj = await createImage(base64) + const base64ImageObj = await Command.createImage(base64) ctx.globalCompositeOperation = 'destination-in'; ctx.drawImage(base64ImageObj, 0, 0, dim.width, dim.height); image.src = canvas.toDataURL(); @@ -1047,7 +829,7 @@ await sleep() } - let im = await createImage(data.options.defaultImage) + let im = await Command.createImage(data.options.defaultImage) // console.log(layers1, layers1.length) if (!layers1.filter(l => l.name == 'Image_' + data.id)[0]) { addImage(0, 'Image_' + data.id, im) @@ -1063,48 +845,6 @@ - - async function getQueue(clientId) { - try { - - const res = await fetch(`${get_url()}/queue`); - const data = await res.json(); - return { - // Running action uses a different endpoint for cancelling - Running: Array.from(data.queue_running, prompt => { - if (prompt[3].client_id === clientId) { - let prompt_id = prompt[1]; - return { - prompt_id, - remove: () => interrupt(), - } - } - }), - Pending: data.queue_pending.map((prompt) => ({ prompt })), - }; - } catch (error) { - console.error(error); - return { Running: [], Pending: [] }; - } - } - - - async function interrupt() { - try { - await fetch(`${get_url()}/interrupt`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: undefined - }); - - } catch (error) { - console.error(error) - } - return true - } - // 种子的处理 function randomSeed(seed, data) { let max_seed = 4294967295 @@ -1158,92 +898,10 @@ } } - function queuePrompt(appInfo, promptWorkflow, seed, client_id) { - // appinfo升级后 兼容,补丁 - for (const id in promptWorkflow) { - if (promptWorkflow[id].class_type == 'AppInfo') { - promptWorkflow[id].inputs.category = promptWorkflow[id].inputs.category || "" - } - } - // 随机seed - promptWorkflow = randomSeed(seed, promptWorkflow); - - let url = get_url() - const data = JSON.stringify({ prompt: promptWorkflow, client_id }); - fetch(`${url}/prompt`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json', - }, - body: data, - }) - .then(async response => { - // Handle response here - // console.log(response) - let res = await response.json(); - window.prompt_ids[res.prompt_id] = { - appInfo, - prompt_id: res.prompt_id - } - }) - .catch(error => { - // Handle error here - }); - } - // 新的运行工作流的接口 - function queuePromptNew(filename, category, seed, input, client_id) { - let url = get_url() - // var filename = "Text-to-Image_1.json", category = ""; - - // 随机seed - // promptWorkflow = randomSeed(seed, promptWorkflow); - - const data = JSON.stringify({ filename, category, seed, input, client_id }); - fetch(`${url}/mixlab/prompt`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json', - }, - body: data, - }) - } - - function success(isSuccess, btn, text) { - isSuccess ? btn.innerText = 'success' : text; - setTimeout(() => { - btn.innerText = text; - }, 5000) - } - async function get_my_app(category = "", filename = null) { - let url = get_url() - const res = await fetch(`${url}/mixlab/workflow`, { - method: 'POST', - mode: 'cors', // 允许跨域请求 - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - task: 'my_app', - filename, - category - }) - }) - let result = await res.json(); - let data = []; - try { - for (const res of result.data) { - let { output, app } = res.data; - if (app.filename) data.push({ - ...app, - data: output, - date: res.date - }) - } - } catch (error) { - } + let data = await Command.get_my_app(category, filename); // 排序 let appSelected = localStorage.getItem('app_selected') @@ -1256,7 +914,7 @@ if (i !== 0) { const targetElement = array.splice(i, 1)[0]; - let nt = (await get_my_app(targetElement.category, targetElement.filename))[0]; + let nt = (await Command.get_my_app(targetElement.category, targetElement.filename))[0]; array.unshift(nt); } @@ -1349,20 +1007,20 @@ copyText.style.marginLeft = '18px'; copyText.addEventListener('click', e => { e.preventDefault(); - copyTextToClipboard((window._appData.share_prefix || '') + " " + output_card.outerHTML, (r) => success(r, copyText, 'copy text for share')) + Command.copyTextToClipboard((window._appData.share_prefix || '') + " " + output_card.outerHTML, (r) => Command.success(r, copyText, 'copy text for share')) }) } copyImage.addEventListener('click', e => { e.preventDefault(); - // copyHtmlWithImagesToClipboard(output_card.outerHTML) - copyImagesToClipboard(output_card.outerHTML, (r) => success(r, copyImage, 'copy image')) - // copyTextToClipboard() + // Command.copyHtmlWithImagesToClipboard(output_card.outerHTML) + Command.copyImagesToClipboard(output_card.outerHTML, (r) => Command.success(r, copyImage, 'copy image')) + // Command.copyTextToClipboard() }) copyHTML.addEventListener('click', e => { e.preventDefault(); - copyHtmlWithImagesToClipboard((window._appData.share_prefix || '') + " " + output_card.outerHTML, (r) => success(r, copyHTML, 'copy as html')) - // copyImagesToClipboard(output_card.outerHTML) + Command.copyHtmlWithImagesToClipboard((window._appData.share_prefix || '') + " " + output_card.outerHTML, (r) => Command.success(r, copyHTML, 'copy as html')) + // Command.copyImagesToClipboard(output_card.outerHTML) }) //是否显示复制图片,复制html两个按钮 @@ -1397,7 +1055,7 @@ let a = document.createElement('div'); a.id = `output_${node.id}` - let img = await createImage(url) + let img = await Command.createImage(url) a.appendChild(img) // a.setAttribute('data-pswp-width', img.naturalWidth); @@ -1508,13 +1166,6 @@ } - async function calculateImageHash(blob) { - const buffer = await blob.arrayBuffer(); - const hashBuffer = await crypto.subtle.digest('SHA-256', buffer); - const hashArray = Array.from(new Uint8Array(hashBuffer)); - const hashHex = hashArray.map(byte => byte.toString(16).padStart(2, '0')).join(''); - return hashHex; - } async function handleClipboardImage(imageElement, data) { //data.class_type === 'LoadImagesToBatch' @@ -1526,16 +1177,16 @@ if (type.startsWith('image/')) { const fileBlob = await clipboardItem.getType(type); // // 获取读取的文件内容,即 Blob 对象 - let hashId = await calculateImageHash(fileBlob) + let hashId = await Command.calculateImageHash(fileBlob) if (window._appData.data && hashId == window._appData.data[data.id].hashId) return - let base64 = await blobToBase64(fileBlob) + let base64 = await Command.blobToBase64(fileBlob) if (data.class_type === 'LoadImagesToBatch') { createBase64ImageForLoadImageToBatch(imageElement, data.id, base64) } else { - let { url, name } = await uploadImage(fileBlob); + let { url, name } = await Command.uploadImage(fileBlob); // 在这里可以对 Blob 对象进行进一步处理 imageElement.src = url; if (window._appData.data && window._appData.data[data.id]) window._appData.data[data.id].inputs.image = name; @@ -1565,130 +1216,16 @@ } - function copyHtmlWithImagesToClipboard(data, cb) { - // 创建一个临时div元素 - const tempDiv = document.createElement('div'); - - // 将HTML字符串赋值给div的innerHTML属性 - tempDiv.innerHTML = data; - - // 获取div中的所有图像元素 - const images = tempDiv.getElementsByTagName('img'); - - // 遍历图像元素,并将图像数据转换为Base64编码 - for (let i = 0; i < images.length; i++) { - const image = images[i]; - const canvas = document.createElement('canvas'); - const context = canvas.getContext('2d'); - - // 设置canvas尺寸与图像尺寸相同 - canvas.width = image.width; - canvas.height = image.height; - - // 在canvas上绘制图像 - context.drawImage(image, 0, 0); - - // 将canvas转换为Base64编码 - const imageData = canvas.toDataURL(); - - // 将Base64编码替换图像元素的src属性 - image.src = imageData; - } - - let richText = tempDiv.innerHTML; - - // 创建一个新的Blob对象,并将富文本字符串作为数据传递进去 - const blob = new Blob([richText], { type: 'text/html' }); - - // 创建一个ClipboardItem对象,并将Blob对象添加到其中 - const clipboardItem = new ClipboardItem({ 'text/html': blob }); - - // 使用Clipboard API将内容复制到剪贴板 - navigator.clipboard.write([clipboardItem]) - .then(() => { - console.log('富文本已成功复制到剪贴板'); - tempDiv.remove() - if (cb) cb(true) - }) - .catch((error) => { - console.error('复制到剪贴板失败:', error); - tempDiv.remove() - if (cb) cb(false) - }); - - } // const htmlWithImages = "

这是要复制的HTML内容

" - // copyHtmlWithImagesToClipboard(htmlWithImages); - - function copyImagesToClipboard(html, cb) { - const tempDiv = document.createElement('div'); - tempDiv.innerHTML = html; - const images = tempDiv.querySelectorAll('img'); - const promises = Array.from(images).map((image) => { - return new Promise((resolve) => { - const img = new Image(); - img.src = image.src; - img.onload = () => { - const canvas = document.createElement('canvas'); - const context = canvas.getContext('2d'); - canvas.width = img.width; - canvas.height = img.height; - context.drawImage(img, 0, 0); - canvas.toBlob((blob) => { - const clipboardItem = new ClipboardItem({ 'image/png': blob }); - navigator.clipboard.write([clipboardItem]) - .then(() => { - resolve(); - tempDiv.remove() - if (cb) cb(true) - }) - .catch((error) => { - reject(error); - tempDiv.remove() - if (cb) cb(false) - }); - }); - }; - }); - }); - Promise.all([...promises]) - .then(() => { - console.log('所有图片已成功复制到剪贴板'); - if (cb) cb(true) - tempDiv.remove() - }) - .catch((error) => { - console.error('复制到剪贴板失败:', error); - if (cb) cb(false) - tempDiv.remove() - }); - } - - function copyTextToClipboard(html, cb) { - const tempDiv = document.createElement('div'); - tempDiv.innerHTML = html; + // Command.copyHtmlWithImagesToClipboard(htmlWithImages); - const text = tempDiv.innerText; - const textData = new ClipboardItem({ 'text/plain': new Blob([text], { type: 'text/plain' }) }); - navigator.clipboard.write([textData]) - .then(() => { - console.log('所有文本已成功复制到剪贴板', text); - if (cb) cb(true) - tempDiv.remove() - }) - .catch((error) => { - console.error('复制到剪贴板失败:', error); - if (cb) cb(false) - tempDiv.remove() - }); - } // const htmlString = "

这是要复制的HTML内容

"; - // copyImagesToClipboard(htmlString); + // Command.copyImagesToClipboard(htmlString); // 上传音频转为base64 @@ -1752,14 +1289,10 @@ inputData = inputData.filter(inp => inp); // console.log('inputData',inputData) inputData.forEach(async data => { - console.log('inputData', data); + // console.log('inputData', data); // 图片 or 视频输入 - - if (["LoadImage", - "VHS_LoadVideo", - "ImagesPrompt_", - "LoadImagesToBatch"].includes(data.class_type)) { + if (Command._imageNodes.includes(data.class_type)) { let isVideoUpload = data.class_type === "VHS_LoadVideo"; @@ -1813,7 +1346,7 @@ subfolder = ""; name = data.inputs.video; } - let url = `${get_url()}/view?filename=${encodeURIComponent(name)}&type=input&subfolder=${subfolder}&rand=${Math.random()}` + let url = `${Command.get_url()}/view?filename=${encodeURIComponent(name)}&type=input&subfolder=${subfolder}&rand=${Math.random()}` imageElement.src = url; // imageElement.innerHTML=`` @@ -1826,7 +1359,7 @@ name = data.inputs.image; } // imageElement.src = base64Df - let url = `${get_url()}/view?filename=${encodeURIComponent(name)}&type=input&subfolder=${subfolder}&rand=${Math.random()}` + let url = `${Command.get_url()}/view?filename=${encodeURIComponent(name)}&type=input&subfolder=${subfolder}&rand=${Math.random()}` // 如果有默认图 imageElement.src = data.options?.defaultImage || url; imageElement.setAttribute('onerror', `this.src='${base64Df}'`) @@ -1895,19 +1428,19 @@ // 获取读取的文件内容,即 Blob 对象 const fileBlob = new Blob([reader.result], { type: file.type }); // console.log( file.type.split('/')[1]) - let hashId = await calculateImageHash(fileBlob) + let hashId = await Command.calculateImageHash(fileBlob) if (window._appData.data && hashId == window._appData.data[data.id].hashId) return if (data.class_type === 'LoadImagesToBatch') { // 上传 ,转为base64 - let base64 = await blobToBase64(fileBlob) + let base64 = await Command.blobToBase64(fileBlob) createBase64ImageForLoadImageToBatch(imageElement, data.id, base64) } else { //上传,返回url - let { url, name } = await uploadImage(fileBlob, '.' + file.type.split('/')[1]) + let { url, name } = await Command.uploadImage(fileBlob, '.' + file.type.split('/')[1]) - let base64 = await parseImageToBase64(url); + let base64 = await Command.parseImageToBase64(url); if (data.class_type === 'ImagesPrompt_') { uploadContainer.querySelector('.images_prompt_main').src = base64; @@ -1972,7 +1505,7 @@ }) - // imageElement.src = `${get_url()}/view?filename=${encodeURIComponent(data.inputs.image)}&type=${type}&subfolder=${subfolder}`; + // imageElement.src = `${Command.get_url()}/view?filename=${encodeURIComponent(data.inputs.image)}&type=${type}&subfolder=${subfolder}`; if (data.class_type !== 'ImagesPrompt_') uploadContainer.appendChild(imageElement); // Append the upload container to the main container @@ -1980,7 +1513,7 @@ } // 滑块输入 - if (["PromptSlide"].includes(data.class_type)) { + if (Command._slideNodes.includes(data.class_type)) { // 滑块输入 let options = data.options || { min: -3, @@ -2015,7 +1548,7 @@ // 数字输入支持 - if (['FloatSlider', 'IntNumber'].includes(data.class_type)) { + if (Command._numberNodes.includes(data.class_type)) { // console.log('data.options',data.options) // 滑块输入 let options = data.options || { @@ -2045,7 +1578,7 @@ } // 文本输入支持 - if (["TextInput_", "CLIPTextEncode", "PromptSimplification", "ChinesePrompt_Mix"].includes(data.class_type)) { + if (Command._textNodes.includes(data.class_type)) { // Create a container for the upload control const uploadContainer = document.createElement("div"); uploadContainer.className = 'card'; @@ -2057,6 +1590,7 @@ // Create an input field for the image name const textInput = document.createElement("textarea"); + textInput.id = `input_node_id_${data.id}` // textInput.className=; if (data.class_type == "PromptSimplification") { textInput.value = data.inputs.prompt; @@ -2098,35 +1632,6 @@ // autoResize(textInput); - //动态提示功能 - const dynamicPromptsBtn = document.createElement('button'); - dynamicPromptsBtn.className = "dynamic_prompt" - dynamicPromptsBtn.innerText = 'dynamic'; - dynamicPromptsBtn.style.width = '88px' - uploadContainer.appendChild(dynamicPromptsBtn); - dynamicPromptsBtn.addEventListener('click', e => { - e.preventDefault(); - e.stopPropagation(); - let prompt = dynamicPrompts(textInput.value) - textInput.setAttribute('title', prompt) - dynamicPromptsBtn.setAttribute('title', prompt) - if (data.class_type == "PromptSimplification") { - if (window._appData.data) window._appData.data[data.id].inputs.prompt = prompt; - //更新输入参数 - updateInputData(data.id, (inputs) => { - inputs.prompt = prompt; - return inputs - }) - } else { - if (window._appData.data) window._appData.data[data.id].inputs.text = prompt; - //更新输入参数 - updateInputData(data.id, (inputs) => { - inputs.text = prompt; - return inputs - }) - } - }) - function autoResize(textarea) { textarea.style.height = 'auto'; @@ -2163,10 +1668,9 @@ } // lora的输入支持 - if (["CheckpointLoaderSimple", "LoraLoader"].includes(data.class_type)) { + if (Command._loraNodes.includes(data.class_type)) { let value = data.inputs.ckpt_name || data.inputs.lora_name; - try { let t = ''; if (data.class_type == 'CheckpointLoaderSimple') { @@ -2175,7 +1679,7 @@ t = 'loras' } if (t) { - const response = await fetch(`${get_url()}/mixlab/folder_paths`, { + const response = await fetch(`${Command.get_url()}/mixlab/folder_paths`, { method: 'POST', headers: { 'Content-Type': 'application/json' @@ -2257,7 +1761,7 @@ } // 色彩选择器 - if (["Color"].includes(data.class_type)) { + if (Command._colorNodes.includes(data.class_type)) { let value = data.inputs.color.hex || '#000000'; let d = document.createElement('div'); d.className = 'card'; @@ -2278,7 +1782,7 @@ } // 加载音频 base64 - if (['LoadAndCombinedAudio_'].includes(data.class_type)) { + if (Command._audioNodes.includes(data.class_type)) { let inpAudio = document.createElement('div'); let inputAudio = document.createElement('button'); @@ -2613,7 +2117,7 @@ mainImg.querySelector('img').src = opt.imgurl; if (callback) { if (!opt.imgurl.match('data:image')) { - opt.imgurl = await parseImageToBase64(opt.imgurl) + opt.imgurl = await Command.parseImageToBase64(opt.imgurl) } callback(opt.imgurl, opt.keyword); } @@ -2662,27 +2166,6 @@ return [div, selectElement]; } - function getFilenameAndCategoryFromUrl(url) { - const queryString = url.split('?')[1]; - if (!queryString) { - return {}; - } - - const params = new URLSearchParams(queryString); - - const filename = params.get('filename') ? decodeURIComponent(params.get('filename')) : null; - const category = params.get('category') ? decodeURIComponent(params.get('category') || '') : ''; - - return { category, filename }; - } - - function createImage(url) { - let im = new Image() - return new Promise((res, rej) => { - im.onload = () => res(im) - im.src = url - }) - } async function createUI(data, share = true) { // appData.input, appData.output, appData.seed, share, appData.link @@ -2737,8 +2220,8 @@ shareBtn.innerText = 'copy url'; shareBtn.addEventListener('click', e => { e.preventDefault(); - let url = `${get_url()}/mixlab/app?filename=${encodeURIComponent(window._appData.filename)}&category=${encodeURIComponent(window._appData.category || '')}`; - copyTextToClipboard(url, success(e, shareBtn, 'copy url')); + let url = `${Command.get_url()}/mixlab/app?filename=${encodeURIComponent(window._appData.filename)}&category=${encodeURIComponent(window._appData.category || '')}`; + Command.copyTextToClipboard(url, Command.success(e, shareBtn, 'copy url')); }) titleDiv.appendChild(shareBtn); @@ -2767,7 +2250,7 @@ status.className = 'status'; // seed 汇总 - var seeds = document.createElement('details'); + const seeds = document.createElement('details'); // seeds.textContent = 'Status'; seeds.className = 'seeds'; @@ -2831,6 +2314,58 @@ // statusDiv.appendChild(status); statusDiv.appendChild(seeds); + // 动态组合和批量组合 + const promptLab = document.createElement('details'); + promptLab.className = 'prompt_lab'; + + //判断是否有 + let isPromptLab = false; + for (const node of window._appData.input) { + if (Command._textNodes.includes(node.class_type)) isPromptLab = true; + } + + if (isPromptLab) { + promptLab.innerHTML = `Prompt Lab +
+ ` + const content = promptLab.querySelector('.content'); + //动态提示功能 + const dynamicPromptsBtn = document.createElement('button'); + dynamicPromptsBtn.id = "dynamic_prompt" + dynamicPromptsBtn.className = "mix_on" + dynamicPromptsBtn.innerText = 'dynamic'; + dynamicPromptsBtn.style.width = '88px' + content.appendChild(dynamicPromptsBtn); + dynamicPromptsBtn.addEventListener('click', e => { + e.preventDefault(); + e.stopPropagation(); + dynamicPromptsBtn.classList.toggle("mix_on") + if (dynamicPromptsBtn.classList.contains('mix_on')) { + batchPromptsBtn.classList.remove("mix_on") + } + }) + + + //批量提示功能 + const batchPromptsBtn = document.createElement('button'); + batchPromptsBtn.id = "batch_prompt" + batchPromptsBtn.innerText = 'batch'; + batchPromptsBtn.style.width = '88px' + content.appendChild(batchPromptsBtn); + batchPromptsBtn.addEventListener('click', e => { + e.preventDefault(); + e.stopPropagation(); + batchPromptsBtn.classList.toggle("mix_on") + if (batchPromptsBtn.classList.contains('mix_on')) { + dynamicPromptsBtn.classList.remove("mix_on") + } + }) + + + statusDiv.appendChild(promptLab); + }; + + // 创建输入框 var input1 = createInputs(inputData) @@ -2915,7 +2450,7 @@ console.log(val, id) if (val && type == "image" && output.querySelector(`#output_${id} img`)) { - let im = await createImage(val) + let im = await Command.createImage(val) output.querySelector(`#output_${id} img`).src = val; @@ -2944,7 +2479,7 @@ prompt = v[1]; } - let im = await createImage(url); + let im = await Command.createImage(url); // 构建新的 let a = document.createElement('a'); @@ -3141,7 +2676,7 @@ // 保存结果到记录里 window.prompt_ids[detail.prompt_id].data = detail window.prompt_ids[detail.prompt_id].createTime = (new Date()).getTime() - savePromptResult({ + Command.savePromptResult({ ...window.prompt_ids[detail.prompt_id], prompt_id: detail.prompt_id }) @@ -3163,7 +2698,7 @@ if (images) { // if (!images) return; - let url = get_url(); + let url = Command.get_url(); show(Array.from(images, img => { return `${url}/view?filename=${encodeURIComponent(img.filename)}&type=${img.type}&subfolder=${encodeURIComponent(img.subfolder)}&t=${+new Date()}`; @@ -3171,14 +2706,14 @@ } else if (meshes) { //多个 - let url = get_url(); + let url = Command.get_url(); show(Array.from(meshes, mesh => { return `${url}/view?filename=${encodeURIComponent(mesh.filename)}&type=${mesh.type}&subfolder=${encodeURIComponent(mesh.subfolder)}&t=${+new Date()}`; }), detail.node, 'meshes'); } else if (_images && prompts) { - let url = get_url(); + let url = Command.get_url(); let items = []; // 支持图片的batch @@ -3198,7 +2733,7 @@ show(Array.isArray(text) ? text.join('\n\n') : text, detail.node, 'text') } else if (gifs && gifs[0]) { // if (!images) return; - const src = `${get_url()}/view?filename=${encodeURIComponent(gifs[0].filename)}&type=${gifs[0].type}&subfolder=${encodeURIComponent(gifs[0].subfolder) + const src = `${Command.get_url()}/view?filename=${encodeURIComponent(gifs[0].filename)}&type=${gifs[0].type}&subfolder=${encodeURIComponent(gifs[0].subfolder) }&&format=${gifs[0].format}&t=${+new Date()}`; show(src, detail.node, gifs[0].format.match('video') ? 'video' : 'image'); @@ -3238,13 +2773,149 @@ // filename: window._appData.filename // }, window._appData.data, window._appData.seed, api.clientId); - queuePromptNew( + //动态提示和批量提示功能 + + let isPromptLab = false; + for (const node of window._appData.input) { + if (Command._textNodes.includes(node.class_type)) isPromptLab = true; + } + + if (isPromptLab) { + //如果是动态提示 + if (document.body.querySelector('#dynamic_prompt').classList.contains("mix_on")) { + for (const node of window._appData.input) { + if (Command._textNodes.includes(node.class_type)) { + let id = `#input_node_id_${node.id}` + let prompt = Command.dynamicPrompts(document.body.querySelector(id)?.value || "") + if (node.class_type == "PromptSimplification") { + if (window._appData.data) window._appData.data[node.id].inputs.prompt = prompt; + //更新输入参数 + updateInputData(node.id, (inputs) => { + inputs.prompt = prompt; + return inputs + }) + } else { + if (window._appData.data) window._appData.data[node.id].inputs.text = prompt; + //更新输入参数 + updateInputData(node.id, (inputs) => { + inputs.text = prompt; + return inputs + }) + } + } + }; + } else { + //是批量功能 + let prompts = {}; + for (const node of window._appData.input) { + if (Command._textNodes.includes(node.class_type)) { + let id = `#input_node_id_${node.id}` + let ps = Command.generateAllCombinations(document.body.querySelector(id)?.value || "") + if (node.class_type == "PromptSimplification") { + //更新输入参数 + prompts[node.id] = ["prompt", ps] + + } else { + //更新输入参数 + prompts[node.id] = ["text", ps] + } + } + + } + + + function generateCombinations(prompts, input) { + let results = []; + + function combine(currentInput, index) { + if (index === input.length) { + results.push(JSON.parse(JSON.stringify(currentInput))); + return; + } + + let current = input[index]; + let id = current.id; + let keys = Object.keys(current.inputs); + + // 如果 prompts 中没有对应的 id,直接递归下一个 + if (!prompts[id]) { + combine(currentInput, index + 1); + return; + } + + let values = prompts[id][1]; + for (let value of values) { + let newInput = JSON.parse(JSON.stringify(currentInput)); + + // 替换输入值 + for (let key of keys) { + if (typeof newInput[index].inputs[key] === 'string') { + newInput[index].inputs[key] = value; + } + } + combine(newInput, index + 1); + } + } + + combine(JSON.parse(JSON.stringify(input)), 0); + return results; + } + + console.log('##generateCombinations', prompts, [...window._appData.input.filter(inp => inp)]) + let inputs = generateCombinations(prompts, [...window._appData.input.filter(inp => inp)]) + + for (const inp of inputs) { + Command.queuePromptNew( + window._appData.filename, + window._appData.category, + window._appData.seed, + inp, + api.clientId + ).then(res => { + + if (!res) { + if (api.runningCancel) { + api.runningCancel(); + api.runningCancel = null; + } + + ui.submitButton.element.classList.remove('disabled'); + ui.submitButton.element.innerText = 'Create'; + + return true + + } + }) + } + + return + + } + + } + + + Command.queuePromptNew( window._appData.filename, window._appData.category, window._appData.seed, window._appData.input.filter(inp => inp), api.clientId - ) + ).then(res => { + + if (!res) { + if (api.runningCancel) { + api.runningCancel(); + api.runningCancel = null; + } + + ui.submitButton.element.classList.remove('disabled'); + ui.submitButton.element.innerText = 'Create'; + + return true + + } + }) }, () => { // 取消 @@ -3283,7 +2954,7 @@ api.addEventListener("progress", ({ detail }) => { console.log("progress", detail); - const class_type = window._appData.data[detail?.node]?.class_type || '' + const class_type = window._appData.data ? (window._appData.data[detail?.node]?.class_type || '') : "" try { ui.status.update(`${parseFloat(100 * detail.value / detail.max).toFixed(1)}% ${class_type}`); ui.submitButton.running() @@ -3295,17 +2966,20 @@ api.addEventListener("executed", async ({ detail }) => { console.log("executed", detail) executed(detail, show); + let class_type = window._appData.data ? window._appData.data[detail.node]?.class_type : "" + if (class_type) { + try { + ui.status.update(`executed_#${class_type}`); + ui.submitButton.reset() + } catch (error) { - try { - ui.status.update(`executed_#${window._appData.data[detail.node]?.class_type}`); - ui.submitButton.reset() - } catch (error) { - + } } + // console.log(Running, Pending); try { - const { Running, Pending } = await getQueue(api.clientId); + const { Running, Pending } = await Command.getQueue(api.clientId); if (Running && Running[0]) { api.runningCancel = Running[0].remove; ui.submitButton.running() @@ -3341,7 +3015,7 @@ } try { - const { Running, Pending } = await getQueue(api.clientId); + const { Running, Pending } = await Command.getQueue(api.clientId); if (Running && Running[0]) { api.runningCancel = Running[0].remove; } else { @@ -3495,71 +3169,13 @@
${app.name}
}) } - // 请求历史数据 - async function getPromptResult(category) { - let url = get_url() - try { - const response = await fetch(`${url}/mixlab/prompt_result`, { - method: "POST", - headers: { - "Content-Type": "application/json", - }, - body: JSON.stringify({ - action: "all", - }), - }); - - if (response.ok) { - const data = await response.json(); - console.log("#getPromptResult:", category, data); - - return data.result.filter(r => r.appInfo.category == category) - // 处理返回的数据 - } else { - console.log("Error:", response.status); - // 处理错误情况 - } - } catch (error) { - console.log("Error:", error); - // 处理异常情况 - } - } - // 保存历史数据 - async function savePromptResult(data) { - let url = get_url() - try { - const response = await fetch(`${url}/mixlab/prompt_result`, { - method: "POST", - headers: { - "Content-Type": "application/json", - }, - body: JSON.stringify({ - action: "save", - data - }), - }); - - if (response.ok) { - const res = await response.json(); - console.log("Response:", res); - return res - // 处理返回的数据 - } else { - console.log("Error:", response.status); - // 处理错误情况 - } - } catch (error) { - console.log("Error:", error); - // 处理异常情况 - } - } async function createHistoryList(category) { if (document.body.querySelector('#history_container')) document.body.querySelector('#history_container').remove(); - window._historyData = await getPromptResult(category); + window._historyData = await Command.getPromptResult(category); if (!window._historyData || (window._historyData && window._historyData.length === 0)) return @@ -3651,8 +3267,8 @@
${title}
const innerApp = checkIsInnerApp(); if (!innerApp) { - const { category, filename } = getFilenameAndCategoryFromUrl(location.href); - window._apps = await get_my_app(category, filename); + + window._apps = await Command.getAppInit(); window._appData = window._apps[0]; diff --git a/web/javascript/command.js b/web/javascript/command.js new file mode 100644 index 00000000..e772ccc3 --- /dev/null +++ b/web/javascript/command.js @@ -0,0 +1,680 @@ +function get_url () { + let api_host = `${window.location.hostname}:${window.location.port}` + let api_base = '' + let url = `${window.location.protocol}//${api_host}${api_base}` + return url +} + +function getFilenameAndCategoryFromUrl (url) { + const queryString = url.split('?')[1] + if (!queryString) { + return {} + } + + const params = new URLSearchParams(queryString) + + const filename = params.get('filename') + ? decodeURIComponent(params.get('filename')) + : null + const category = params.get('category') + ? decodeURIComponent(params.get('category') || '') + : '' + + return { category, filename } +} + +async function get_my_app (category = '', filename = null) { + let url = get_url() + const res = await fetch(`${url}/mixlab/workflow`, { + method: 'POST', + mode: 'cors', // 允许跨域请求 + headers: { + 'Content-Type': 'application/json' + }, + body: JSON.stringify({ + task: 'my_app', + filename, + category + }) + }) + let result = await res.json() + let data = [] + try { + for (const res of result.data) { + let { output, app } = res.data + if (app.filename) + data.push({ + ...app, + data: output, + date: res.date + }) + } + } catch (error) {} + + return data +} + +async function getAppInit () { + const { category, filename } = getFilenameAndCategoryFromUrl( + window.location.href + ) + return await get_my_app(category, filename) +} + +function success (isSuccess, btn, text) { + isSuccess ? (btn.innerText = 'success') : text + setTimeout(() => { + btn.innerText = text + }, 5000) +} + +async function interrupt () { + try { + await fetch(`${get_url()}/interrupt`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json' + }, + body: undefined + }) + } catch (error) { + console.error(error) + } + return true +} + +async function getQueue (clientId) { + try { + const res = await fetch(`${get_url()}/queue`) + const data = await res.json() + return { + // Running action uses a different endpoint for cancelling + Running: Array.from(data.queue_running, prompt => { + if (prompt[3].client_id === clientId) { + let prompt_id = prompt[1] + return { + prompt_id, + remove: () => interrupt() + } + } + }), + Pending: data.queue_pending.map(prompt => ({ prompt })) + } + } catch (error) { + console.error(error) + return { Running: [], Pending: [] } + } +} + +// 请求历史数据 +async function getPromptResult (category) { + let url = get_url() + try { + const response = await fetch(`${url}/mixlab/prompt_result`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json' + }, + body: JSON.stringify({ + action: 'all' + }) + }) + + if (response.ok) { + const data = await response.json() + console.log('#getPromptResult:', category, data) + + return data.result.filter(r => r.appInfo.category == category) + // 处理返回的数据 + } else { + console.log('Error:', response.status) + // 处理错误情况 + } + } catch (error) { + console.log('Error:', error) + // 处理异常情况 + } +} + +// 新的运行工作流的接口 +function queuePromptNew (filename, category, seed, input, client_id) { + let url = get_url() + // var filename = "Text-to-Image_1.json", category = ""; + + // 随机seed + // promptWorkflow = randomSeed(seed, promptWorkflow); + + const data = JSON.stringify({ filename, category, seed, input, client_id }) + return new Promise((res, rej) => { + fetch(`${url}/mixlab/prompt`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json' + }, + body: data + }) + .then(response => { + if (!response.ok) { + // Handle HTTP error responses + if (response.status === 400) { + return response.json().then(errorData => { + // Process the error data + console.error('Error 400:', errorData) + alert(JSON.stringify(errorData, null, 2)) + res(null) + }) + } + throw new Error('Network response was not ok') + } + return response.json() // Process the response data + }) + .then(data => { + // Handle the response data + console.log('Success:', data) + res(true) + }) + .catch(error => { + // Handle fetch errors + console.error('Fetch error:', error) + res(null) + }) + }) +} + +// 保存历史数据 +async function savePromptResult (data) { + let url = get_url() + try { + const response = await fetch(`${url}/mixlab/prompt_result`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json' + }, + body: JSON.stringify({ + action: 'save', + data + }) + }) + + if (response.ok) { + const res = await response.json() + console.log('Response:', res) + return res + // 处理返回的数据 + } else { + console.log('Error:', response.status) + // 处理错误情况 + } + } catch (error) { + console.log('Error:', error) + // 处理异常情况 + } +} + +async function uploadImage (blob, fileType = '.png', filename) { + const body = new FormData() + body.append( + 'image', + new File([blob], (filename || new Date().getTime()) + fileType) + ) + + const url = get_url() + + const resp = await fetch(`${url}/upload/image`, { + method: 'POST', + body + }) + + let data = await resp.json() + // console.log(data) + let { name, subfolder } = data + let src = `${url}/view?filename=${encodeURIComponent( + name + )}&type=input&subfolder=${subfolder}&rand=${Math.random()}` + + return { url: src, name } +} + +async function uploadMask (arrayBuffer, imgurl) { + const body = new FormData() + const filename = 'clipspace-mask-' + performance.now() + '.png' + + let original_url = new URL(imgurl) + + const original_ref = { filename: original_url.searchParams.get('filename') } + + let original_subfolder = original_url.searchParams.get('subfolder') + if (original_subfolder) original_ref.subfolder = original_subfolder + + let original_type = original_url.searchParams.get('type') + if (original_type) original_ref.type = original_type + + body.append('image', arrayBuffer, filename) + body.append('original_ref', JSON.stringify(original_ref)) + body.append('type', 'input') + body.append('subfolder', 'clipspace') + + const url = get_url() + + const resp = await fetch(`${url}/upload/mask`, { + method: 'POST', + body + }) + + // console.log(resp) + let data = await resp.json() + let { name, subfolder, type } = data + let src = `${url}/view?filename=${encodeURIComponent( + name + )}&type=${type}&subfolder=${subfolder}&rand=${Math.random()}` + + return { url: src, name: 'clipspace/' + name } +} + +const parseImageToBase64 = url => { + return new Promise((res, rej) => { + fetch(url) + .then(response => response.blob()) + .then(blob => { + const reader = new FileReader() + reader.onloadend = () => { + const base64data = reader.result + res(base64data) + // 在这里可以将base64数据用于进一步处理或显示图片 + } + reader.readAsDataURL(blob) + }) + .catch(error => { + console.log('发生错误:', error) + }) + }) +} + +function createImage (url) { + let im = new Image() + return new Promise((res, rej) => { + im.onload = () => res(im) + im.src = url + }) +} + +function convertImageToBlackBasedOnAlpha (image) { + const canvas = document.createElement('canvas') + const ctx = canvas.getContext('2d') + + // Draw the image onto the canvas + canvas.width = image.width + canvas.height = image.height + ctx.drawImage(image, 0, 0) + + // Get the image data from the canvas + const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height) + const pixels = imageData.data + + // Modify the RGB values based on the alpha channel + for (let i = 0; i < pixels.length; i += 4) { + const alpha = pixels[i + 3] + if (alpha !== 0) { + // Set non-transparent pixels to black + pixels[i] = 0 // Red + pixels[i + 1] = 0 // Green + pixels[i + 2] = 0 // Blue + } + } + + // Put the modified image data back onto the canvas + ctx.putImageData(imageData, 0, 0) + + // Convert the modified canvas to base64 data URL + const base64ImageData = canvas.toDataURL('image/png') // Replace 'png' with your desired image format + + return base64ImageData +} + +const blobToBase64 = blob => { + return new Promise((res, rej) => { + const reader = new FileReader() + reader.onloadend = () => { + const base64data = reader.result + res(base64data) + // 在这里可以将base64数据用于进一步处理或显示图片 + } + reader.readAsDataURL(blob) + }) +} + +function base64ToBlob (base64) { + // 去除base64编码中的前缀 + const base64WithoutPrefix = base64.replace(/^data:image\/\w+;base64,/, '') + + // 将base64编码转换为字节数组 + const byteCharacters = atob(base64WithoutPrefix) + + // 创建一个存储字节数组的数组 + const byteArrays = [] + + // 将字节数组放入数组中 + for (let offset = 0; offset < byteCharacters.length; offset += 1024) { + const slice = byteCharacters.slice(offset, offset + 1024) + + const byteNumbers = new Array(slice.length) + for (let i = 0; i < slice.length; i++) { + byteNumbers[i] = slice.charCodeAt(i) + } + + const byteArray = new Uint8Array(byteNumbers) + byteArrays.push(byteArray) + } + + // 创建blob对象 + const blob = new Blob(byteArrays, { type: 'image/png' }) // 根据实际情况设置MIME类型 + + return blob +} + +async function calculateImageHash (blob) { + const buffer = await blob.arrayBuffer() + const hashBuffer = await crypto.subtle.digest('SHA-256', buffer) + const hashArray = Array.from(new Uint8Array(hashBuffer)) + const hashHex = hashArray + .map(byte => byte.toString(16).padStart(2, '0')) + .join('') + return hashHex +} + +// 获取 rembg 模型 +async function get_rembg_models () { + try { + const response = await fetch(`${get_url()}/mixlab/folder_paths`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json' + }, + body: JSON.stringify({ + type: 'rembg' + }) + }) + + const data = await response.json() + // console.log(data) + return data.names + } catch (error) { + console.error(error) + } +} + +//自动抠图 +async function run_rembg (model, base64) { + try { + const response = await fetch(`${get_url()}/mixlab/rembg`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json' + }, + body: JSON.stringify({ + model, + base64 + }) + }) + + const data = await response.json() + // console.log(data) + return data.data + } catch (error) { + console.error(error) + } +} + +function copyHtmlWithImagesToClipboard (data, cb) { + // 创建一个临时div元素 + const tempDiv = document.createElement('div') + + // 将HTML字符串赋值给div的innerHTML属性 + tempDiv.innerHTML = data + + // 获取div中的所有图像元素 + const images = tempDiv.getElementsByTagName('img') + + // 遍历图像元素,并将图像数据转换为Base64编码 + for (let i = 0; i < images.length; i++) { + const image = images[i] + const canvas = document.createElement('canvas') + const context = canvas.getContext('2d') + + // 设置canvas尺寸与图像尺寸相同 + canvas.width = image.width + canvas.height = image.height + + // 在canvas上绘制图像 + context.drawImage(image, 0, 0) + + // 将canvas转换为Base64编码 + const imageData = canvas.toDataURL() + + // 将Base64编码替换图像元素的src属性 + image.src = imageData + } + + let richText = tempDiv.innerHTML + + // 创建一个新的Blob对象,并将富文本字符串作为数据传递进去 + const blob = new Blob([richText], { type: 'text/html' }) + + // 创建一个ClipboardItem对象,并将Blob对象添加到其中 + const clipboardItem = new ClipboardItem({ 'text/html': blob }) + + // 使用Clipboard API将内容复制到剪贴板 + navigator.clipboard + .write([clipboardItem]) + .then(() => { + console.log('富文本已成功复制到剪贴板') + tempDiv.remove() + if (cb) cb(true) + }) + .catch(error => { + console.error('复制到剪贴板失败:', error) + tempDiv.remove() + if (cb) cb(false) + }) +} + +function copyImagesToClipboard (html, cb) { + const tempDiv = document.createElement('div') + tempDiv.innerHTML = html + const images = tempDiv.querySelectorAll('img') + const promises = Array.from(images).map(image => { + return new Promise(resolve => { + const img = new Image() + img.src = image.src + img.onload = () => { + const canvas = document.createElement('canvas') + const context = canvas.getContext('2d') + canvas.width = img.width + canvas.height = img.height + context.drawImage(img, 0, 0) + canvas.toBlob(blob => { + const clipboardItem = new ClipboardItem({ 'image/png': blob }) + navigator.clipboard + .write([clipboardItem]) + .then(() => { + resolve() + tempDiv.remove() + if (cb) cb(true) + }) + .catch(error => { + reject(error) + tempDiv.remove() + if (cb) cb(false) + }) + }) + } + }) + }) + Promise.all([...promises]) + .then(() => { + console.log('所有图片已成功复制到剪贴板') + if (cb) cb(true) + tempDiv.remove() + }) + .catch(error => { + console.error('复制到剪贴板失败:', error) + if (cb) cb(false) + tempDiv.remove() + }) +} + +function copyTextToClipboard (html, cb) { + const tempDiv = document.createElement('div') + tempDiv.innerHTML = html + + const text = tempDiv.innerText + const textData = new ClipboardItem({ + 'text/plain': new Blob([text], { type: 'text/plain' }) + }) + + navigator.clipboard + .write([textData]) + .then(() => { + console.log('所有文本已成功复制到剪贴板', text) + if (cb) cb(true) + tempDiv.remove() + }) + .catch(error => { + console.error('复制到剪贴板失败:', error) + if (cb) cb(false) + tempDiv.remove() + }) +} + +// ComfyUI\web\extensions\core\dynamicPrompts.js +// 官方实现修改 +// Allows for simple dynamic prompt replacement +// Inputs in the format {a|b} will have a random value of a or b chosen when the prompt is queued. + +/* + * Strips C-style line and block comments from a string + */ +function dynamicPrompts (prompt) { + prompt = prompt.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g, '') + while ( + prompt.replace('\\{', '').includes('{') && + prompt.replace('\\}', '').includes('}') + ) { + const startIndex = prompt.replace('\\{', '00').indexOf('{') + const endIndex = prompt.replace('\\}', '00').indexOf('}') + + const optionsString = prompt.substring(startIndex + 1, endIndex) + const options = optionsString.split('|') + + const randomIndex = Math.floor(Math.random() * options.length) + const randomOption = options[randomIndex] + + prompt = + prompt.substring(0, startIndex) + + randomOption + + prompt.substring(endIndex + 1) + } + return prompt +} + +// 遍历所有组合,语法同 动态提示 +function generateAllCombinations (prompt) { + prompt = prompt.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g, '') + + // Helper function to get all combinations + function getAllCombinations (parts) { + if (parts.length === 0) return [''] + const [firstPart, ...restParts] = parts + const restCombinations = getAllCombinations(restParts) + const allCombinations = [] + + firstPart.forEach(option => { + restCombinations.forEach(combination => { + allCombinations.push(option + combination) + }) + }) + + return allCombinations + } + + // Split prompt into static parts and dynamic parts + let parts = [] + let startIndex = 0 + + while ( + prompt.replace('\\{', '').includes('{') && + prompt.replace('\\}', '').includes('}') + ) { + startIndex = prompt.replace('\\{', '00').indexOf('{') + const endIndex = prompt.replace('\\}', '00').indexOf('}') + const staticPart = prompt.substring(0, startIndex) + const optionsString = prompt.substring(startIndex + 1, endIndex) + const options = optionsString.split('|') + + parts.push([staticPart]) + parts.push(options) + + prompt = prompt.substring(endIndex + 1) + } + + // Add the remaining static part + parts.push([prompt]) + + // Get all combinations + const combinations = getAllCombinations(parts) + + return combinations +} + +const _textNodes = [ + 'TextInput_', + 'CLIPTextEncode', + 'PromptSimplification', + 'ChinesePrompt_Mix' + ], + _loraNodes = ['CheckpointLoaderSimple', 'LoraLoader'], + _numberNodes = ['FloatSlider', 'IntNumber'], + _slideNodes = ['PromptSlide'], + _imageNodes = [ + 'LoadImage', + 'VHS_LoadVideo', + 'ImagesPrompt_', + 'LoadImagesToBatch' + ], + _colorNodes = ['Color'], + _audioNodes = ['LoadAndCombinedAudio_'] + +export default { + get_url, + get_my_app, + getAppInit, + getFilenameAndCategoryFromUrl, + success, + interrupt, + getQueue, + queuePromptNew, + savePromptResult, + uploadImage, + uploadMask, + run_rembg, + get_rembg_models, + parseImageToBase64, + createImage, + convertImageToBlackBasedOnAlpha, + blobToBase64, + base64ToBlob, + calculateImageHash, + copyHtmlWithImagesToClipboard, + copyImagesToClipboard, + copyTextToClipboard, + dynamicPrompts, + generateAllCombinations, + + _textNodes, + _loraNodes, + _numberNodes, + _slideNodes, + _imageNodes, + _colorNodes, + _audioNodes +} diff --git a/web/javascript/ui_mixlab.js b/web/javascript/ui_mixlab.js index 0f2dfb78..19b17118 100644 --- a/web/javascript/ui_mixlab.js +++ b/web/javascript/ui_mixlab.js @@ -163,17 +163,20 @@ async function createMenu () { // appsButton.onclick = () => appsButton.onclick = async () => { - if (window._mixlab_llamacpp&&window._mixlab_llamacpp.model&&window._mixlab_llamacpp.model.length>0) { - //显示运行的模型 - createModelsModal([ - window._mixlab_llamacpp.url, - window._mixlab_llamacpp.model - ]) - } else { - let ms = await get_llamafile_models() - ms = ms.filter(m => !m.match('-mmproj-')) - if (ms.length > 0) createModelsModal(ms) - } + // if (window._mixlab_llamacpp&&window._mixlab_llamacpp.model&&window._mixlab_llamacpp.model.length>0) { + // //显示运行的模型 + // createModelsModal([ + // window._mixlab_llamacpp.url, + // window._mixlab_llamacpp.model + // ]) + // } else { + // // let ms = await get_llamafile_models() + // // ms = ms.filter(m => !m.match('-mmproj-')) + // // if (ms.length > 0) createModelsModal(ms) + // } + createModelsModal([ + + ]) } menu.append(appsButton) } @@ -932,16 +935,16 @@ function createModelsModal (models) { const n_gpu_p = document.createElement('p') n_gpu_p.innerText = 'n_gpu_layers' - const n_gpu_div = document.createElement('div') - n_gpu_div.style = `display: flex; + const batchPageBtn = document.createElement('div') + batchPageBtn.style = `display: flex; justify-content: center; align-items: center; font-size: 12px;` - n_gpu_div.appendChild(n_gpu_p) - n_gpu_div.appendChild(n_gpu) + batchPageBtn.innerHTML=`App` const title = document.createElement('p') - title.innerText = 'Models' + title.innerText = 'Mixlab Nodes' title.style = `font-size: 18px; margin-right: 8px; margin-top: 0;` @@ -953,9 +956,9 @@ function createModelsModal (models) { font-size: 12px; flex-direction: column; ` left_d.appendChild(title) - title.appendChild(statusIcon) - left_d.appendChild(linkIcon) - left_d.appendChild(n_gpu_div) + // title.appendChild(statusIcon) + // left_d.appendChild(linkIcon) + left_d.appendChild(batchPageBtn) headTitleElement.appendChild(left_d) // headTitleElement.appendChild(n_gpu_div) @@ -1010,24 +1013,24 @@ function createModelsModal (models) { var modalContent = document.createElement('div') modalContent.classList.add('modal-content') - var input = document.createElement('textarea') - input.className = 'comfy-multiline-input' - input.style = ` height: 260px; + var inputForSystemPrompt = document.createElement('textarea') + inputForSystemPrompt.className = 'comfy-multiline-input' + inputForSystemPrompt.style = ` height: 260px; width: 480px; font-size: 16px; padding: 18px;` - input.value = localStorage.getItem('_mixlab_system_prompt') + inputForSystemPrompt.value = localStorage.getItem('_mixlab_system_prompt') - input.addEventListener('change', e => { + inputForSystemPrompt.addEventListener('change', e => { e.stopPropagation() - localStorage.setItem('_mixlab_system_prompt', input.value) + localStorage.setItem('_mixlab_system_prompt', inputForSystemPrompt.value) }) - input.addEventListener('click', e => { + inputForSystemPrompt.addEventListener('click', e => { e.stopPropagation() }) - modalContent.appendChild(input) + // modalContent.appendChild(inputForSystemPrompt) if (!window._mixlab_llamacpp||(window._mixlab_llamacpp?.model?.length==0)) { for (const m of models) { @@ -1040,10 +1043,10 @@ function createModelsModal (models) { d.addEventListener('click', async e => { e.stopPropagation() div.remove() - startLLM(m) + // startLLM(m) }) - modalContent.appendChild(d) + // modalContent.appendChild(d) } } modal.appendChild(modalContent) @@ -1414,7 +1417,7 @@ app.registerExtension({ .setAttribute('title', res.url) }) }else{ - startLLM('') + // startLLM('') } LGraphCanvas.prototype.helpAboutNode = async function (node) {