-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathcnn_model.py
214 lines (203 loc) · 10.1 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import chainer
import chainer.functions as F
import chainer.links as L
from chainer.functions.loss import softmax_cross_entropy
from chainer.functions.evaluation import accuracy
from chainer import reporter
# CONV -> Batch -> ReLU
class ConvBlock(chainer.Chain):
def __init__(self, ksize, n_out, initializer):
super(ConvBlock, self).__init__()
pad_size = ksize // 2
links = [('conv1', L.Convolution2D(None, n_out, ksize, pad=pad_size, initialW=initializer))]
links += [('bn1', L.BatchNormalization(n_out))]
for link in links:
self.add_link(*link)
self.forward = links
def __call__(self, x, train):
param_num = 0
for name, f in self.forward:
if 'conv1' in name:
x = getattr(self, name)(x)
param_num += (f.W.shape[0]*f.W.shape[2]*f.W.shape[3]*f.W.shape[1]+f.W.shape[0])
elif 'bn1' in name:
x = getattr(self, name)(x, not train)
param_num += x.data.shape[1]*2
return (F.relu(x), param_num)
# [(CONV -> Batch -> ReLU -> CONV -> Batch) + (x)]
class ResBlock(chainer.Chain):
def __init__(self, ksize, n_out, initializer):
super(ResBlock, self).__init__()
pad_size = ksize // 2
links = [('conv1', L.Convolution2D(None, n_out, ksize, pad=pad_size, initialW=initializer))]
links += [('bn1', L.BatchNormalization(n_out))]
links += [('_act1', F.ReLU())]
links += [('conv2', L.Convolution2D(n_out, n_out, ksize, pad=pad_size, initialW=initializer))]
links += [('bn2', L.BatchNormalization(n_out))]
for link in links:
if not link[0].startswith('_'):
self.add_link(*link)
self.forward = links
def __call__(self, x, h, train):
xp = chainer.cuda.get_array_module(x)
param_num = 0
for name, f in self.forward:
if 'conv' in name:
x = getattr(self, name)(x)
param_num += (f.W.shape[0]*f.W.shape[2]*f.W.shape[3]*f.W.shape[1]+f.W.shape[0])
elif 'bn' in name:
x = getattr(self, name)(x, not train)
param_num += x.data.shape[1]*2
elif 'act' in name:
x = f(x)
else:
print('not defined function at ResBlock __call__')
exit(1)
in_data = [x, h]
# check of the image size
small_in_id, large_in_id = (0, 1) if in_data[0].shape[2] < in_data[1].shape[2] else (1, 0)
pool_num = xp.floor(xp.log2(in_data[large_in_id].shape[2] / in_data[small_in_id].shape[2]))
for _ in xp.arange(pool_num):
in_data[large_in_id] = F.max_pooling_2d(in_data[large_in_id], self.pool_size, self.pool_size, 0, False)
# check of the channel size
small_ch_id, large_ch_id = (0, 1) if in_data[0].shape[1] < in_data[1].shape[1] else (1, 0)
pad_num = int(in_data[large_ch_id].shape[1] - in_data[small_ch_id].shape[1])
tmp = in_data[large_ch_id][:, :pad_num, :, :]
in_data[small_ch_id] = F.concat((in_data[small_ch_id], tmp * 0), axis=1)
return (F.relu(in_data[0]+in_data[1]), param_num)
# Construct a CNN model using CGP (list)
class CGP2CNN(chainer.Chain):
def __init__(self, cgp, n_class, lossfun=softmax_cross_entropy.softmax_cross_entropy, accfun=accuracy.accuracy):
super(CGP2CNN, self).__init__()
self.cgp = cgp
self.pool_size = 2
initializer = chainer.initializers.HeNormal()
links = []
i = 1
for name, in1, in2 in self.cgp:
if name == 'pool_max':
links += [('_'+name+'_'+str(i), F.MaxPooling2D(self.pool_size, self.pool_size, 0, False))]
elif name == 'pool_ave':
links += [('_'+name+'_'+str(i), F.AveragePooling2D(self.pool_size, self.pool_size, 0, False))]
elif name == 'concat':
links += [('_'+name+'_'+str(i), F.Concat())]
elif name == 'sum':
links += [('_'+name+'_'+str(i), F.Concat())] # the F.Concat() is dummy
elif name == 'ConvBlock32_3':
links += [(name+'_'+str(i), ConvBlock(3, 32, initializer))]
elif name == 'ConvBlock32_5':
links += [(name+'_'+str(i), ConvBlock(5, 32, initializer))]
elif name == 'ConvBlock32_7':
links += [(name+'_'+str(i), ConvBlock(7, 32, initializer))]
elif name == 'ConvBlock64_3':
links += [(name+'_'+str(i), ConvBlock(3, 64, initializer))]
elif name == 'ConvBlock64_5':
links += [(name+'_'+str(i), ConvBlock(5, 64, initializer))]
elif name == 'ConvBlock64_7':
links += [(name+'_'+str(i), ConvBlock(7, 64, initializer))]
elif name == 'ConvBlock128_3':
links += [(name+'_'+str(i), ConvBlock(3, 128, initializer))]
elif name == 'ConvBlock128_5':
links += [(name+'_'+str(i), ConvBlock(5, 128, initializer))]
elif name == 'ConvBlock128_7':
links += [(name+'_'+str(i), ConvBlock(7, 128, initializer))]
elif name == 'ResBlock32_3':
links += [(name+'_'+str(i), ResBlock(3, 32, initializer))]
elif name == 'ResBlock32_5':
links += [(name+'_'+str(i), ResBlock(5, 32, initializer))]
elif name == 'ResBlock32_7':
links += [(name+'_'+str(i), ResBlock(7, 32, initializer))]
elif name == 'ResBlock64_3':
links += [(name+'_'+str(i), ResBlock(3, 64, initializer))]
elif name == 'ResBlock64_5':
links += [(name+'_'+str(i), ResBlock(5, 64, initializer))]
elif name == 'ResBlock64_7':
links += [(name+'_'+str(i), ResBlock(7, 64, initializer))]
elif name == 'ResBlock128_3':
links += [(name+'_'+str(i), ResBlock(3, 128, initializer))]
elif name == 'ResBlock128_5':
links += [(name+'_'+str(i), ResBlock(5, 128, initializer))]
elif name == 'ResBlock128_7':
links += [(name+'_'+str(i), ResBlock(7, 128, initializer))]
elif name == 'full':
links += [(name+'_'+str(i), L.Linear(None, n_class, initialW=initializer))]
i += 1
for link in links:
if not link[0].startswith('_'):
self.add_link(*link)
self.forward = links
self.train = True
self.lossfun = lossfun
self.accfun = accfun
self.loss = None
self.accuracy = None
self.outputs = [None for _ in range(len(self.cgp))]
self.param_num = 0
def __call__(self, x, t):
xp = chainer.cuda.get_array_module(x)
outputs = self.outputs
outputs[0] = x # input image
nodeID = 1
param_num = 0
for name, f in self.forward:
if 'ConvBlock' in name:
outputs[nodeID], tmp_num = getattr(self, name)(outputs[self.cgp[nodeID][1]], self.train)
nodeID += 1
param_num += tmp_num
elif 'ResBlock' in name:
outputs[nodeID], tmp_num = getattr(self, name)(outputs[self.cgp[nodeID][1]], outputs[self.cgp[nodeID][1]], self.train)
nodeID += 1
param_num += tmp_num
elif 'pool' in name:
# check of the image size
if outputs[self.cgp[nodeID][1]].shape[2] > 1:
outputs[nodeID] = f(outputs[self.cgp[nodeID][1]])
nodeID += 1
else:
outputs[nodeID] = outputs[self.cgp[nodeID][1]]
nodeID += 1
elif 'concat' in name:
in_data = [outputs[self.cgp[nodeID][1]], outputs[self.cgp[nodeID][2]]]
# check of the image size
small_in_id, large_in_id = (0, 1) if in_data[0].shape[2] < in_data[1].shape[2] else (1, 0)
pool_num = xp.floor(xp.log2(in_data[large_in_id].shape[2] / in_data[small_in_id].shape[2]))
for _ in xp.arange(pool_num):
in_data[large_in_id] = F.max_pooling_2d(in_data[large_in_id], self.pool_size, self.pool_size, 0, False)
# concat
outputs[nodeID] = f(in_data[0], in_data[1])
nodeID += 1
elif 'sum' in name:
in_data = [outputs[self.cgp[nodeID][1]], outputs[self.cgp[nodeID][2]]]
# check of the image size
small_in_id, large_in_id = (0, 1) if in_data[0].shape[2] < in_data[1].shape[2] else (1, 0)
pool_num = xp.floor(xp.log2(in_data[large_in_id].shape[2] / in_data[small_in_id].shape[2]))
for _ in xp.arange(pool_num):
in_data[large_in_id] = F.max_pooling_2d(in_data[large_in_id], self.pool_size, self.pool_size, 0, False)
# check of the channel size
small_ch_id, large_ch_id = (0, 1) if in_data[0].shape[1] < in_data[1].shape[1] else (1, 0)
pad_num = int(in_data[large_ch_id].shape[1] - in_data[small_ch_id].shape[1])
tmp = in_data[large_ch_id][:, :pad_num, :, :]
in_data[small_ch_id] = F.concat((in_data[small_ch_id], tmp * 0), axis=1)
# summation
outputs[nodeID] = in_data[0] + in_data[1]
nodeID += 1
elif 'full' in name:
outputs[nodeID] = getattr(self, name)(outputs[self.cgp[nodeID][1]])
nodeID += 1
param_num += f.W.data.shape[0] * f.W.data.shape[1] + f.b.data.shape[0]
else:
print('not defined function at CGP2CNN __call__')
exit(1)
self.param_num = param_num
if t is not None:
self.loss = None
self.accuracy = None
self.loss = self.lossfun(outputs[-1], t)
reporter.report({'loss': self.loss}, self)
self.accuracy = self.accfun(outputs[-1], t)
reporter.report({'accuracy': self.accuracy}, self)
return self.loss
else:
return outputs[-1]