-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
174 lines (144 loc) · 4.82 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from typing import List
from snowflake.snowpark.session import Session
from snowflake.core import Root
from snowflake.cortex import Complete
import streamlit as st
from trulens.core import TruSession
from trulens.core.guardrails.base import context_filter
from trulens.apps.custom import TruCustomApp
from trulens.apps.custom import instrument
from trulens.providers.cortex import Cortex
from trulens.core import Feedback
from trulens.core import Select
import numpy as np
from sqlalchemy import create_engine
from snowflake.sqlalchemy import URL
import snowflake.connector
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
p_key= serialization.load_pem_private_key(
st.secrets["SNOWFLAKE_PRIVATE_KEY"].encode(),
password=None,
backend=default_backend()
)
pkb = p_key.private_bytes(
encoding=serialization.Encoding.DER,
format=serialization.PrivateFormat.PKCS8,
encryption_algorithm=serialization.NoEncryption())
connection_details = {
"account": st.secrets["SNOWFLAKE_ACCOUNT"],
"user": st.secrets["SNOWFLAKE_USER"],
"private_key": pkb,
"role": st.secrets["SNOWFLAKE_ROLE"],
"database": st.secrets["SNOWFLAKE_DATABASE"],
"schema": st.secrets["SNOWFLAKE_SCHEMA"],
"warehouse": st.secrets["SNOWFLAKE_WAREHOUSE"]
}
engine = create_engine(URL(
account=st.secrets["SNOWFLAKE_ACCOUNT"],
warehouse=st.secrets["SNOWFLAKE_WAREHOUSE"],
database=st.secrets["SNOWFLAKE_DATABASE"],
schema=st.secrets["SNOWFLAKE_SCHEMA"],
user=st.secrets["SNOWFLAKE_USER"],),
connect_args={
'private_key': pkb,
},
)
snowflake_connection = snowflake.connector.connect(**connection_details)
tru = TruSession(database_engine = engine)
session = Session.builder.configs(connection_details).create()
class CortexSearchRetriever:
def __init__(self, session: Session, limit_to_retrieve: int = 4):
self._session = session
self._limit_to_retrieve = limit_to_retrieve
def retrieve(self, query: str) -> List[str]:
root = Root(self._session)
cortex_search_service = (
root
.databases[st.secrets["SNOWFLAKE_DATABASE"]]
.schemas[st.secrets["SNOWFLAKE_SCHEMA"]]
.cortex_search_services[st.secrets["SNOWFLAKE_CORTEX_SEARCH_SERVICE"]]
)
resp = cortex_search_service.search(
query=query,
columns=["doc_text"],
limit=self._limit_to_retrieve,
)
if resp.results:
return [curr["doc_text"] for curr in resp.results]
else:
return []
provider = Cortex(snowflake_connection, model_engine="llama3.1-8b")
f_groundedness = (
Feedback(
provider.groundedness_measure_with_cot_reasons, name="Groundedness")
.on(Select.RecordCalls.retrieve_context.rets[:].collect())
.on_output()
)
f_context_relevance = (
Feedback(
provider.context_relevance,
name="Context Relevance")
.on_input()
.on(Select.RecordCalls.retrieve_context.rets[:])
.aggregate(np.mean)
)
f_answer_relevance = (
Feedback(
provider.relevance,
name="Answer Relevance")
.on_input()
.on_output()
.aggregate(np.mean)
)
feedbacks = [f_context_relevance,
f_answer_relevance,
f_groundedness,
]
class RAG_from_scratch:
def __init__(self):
self.retriever = CortexSearchRetriever(session=session, limit_to_retrieve=4)
@instrument
def retrieve_context(self, query: str) -> list:
"""
Retrieve relevant text from vector store.
"""
return self.retriever.retrieve(query)
@instrument
def generate_completion(self, query: str, context_str: list) -> str:
"""
Generate answer from context.
"""
prompt = f"""
'You are an expert assistance extracting information from context provided.
Answer the question based on the context. Be concise and do not hallucinate.
If you don´t have the information just say so.
Context: {context_str}
Question:
{query}
Answer: '
"""
return Complete("mistral-large", prompt)
@instrument
def query(self, query: str) -> str:
context_str = self.retrieve_context(query)
return self.generate_completion(query, context_str)
class filtered_RAG_from_scratch(RAG_from_scratch):
@instrument
@context_filter(f_context_relevance, 0.75, keyword_for_prompt="query")
def retrieve_context(self, query: str) -> list:
"""
Retrieve relevant text from vector store.
"""
results = self.retriever.retrieve(query)
return results
rag = RAG_from_scratch()
tru_rag = TruCustomApp(rag,
app_version = 'v1',
app_name = 'RAG',
feedbacks = feedbacks)
filtered_rag = filtered_RAG_from_scratch()
filtered_tru_rag = TruCustomApp(filtered_rag,
app_version = 'v2',
app_name = 'RAG',
feedbacks = feedbacks)