-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4_text_classification.py
134 lines (108 loc) · 3.69 KB
/
4_text_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#%%
!pip install torchtext
!pip install spacy==2.3.5
!python -m spacy download en
#%%
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from torchtext import data
import torchtext
from pathlib import Path
import pandas as pd
import spacy
# %%
# CPU or GPU
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# %%
#学習用のデータをここからダウンロード
# https://www.kaggle.com/kazanova/sentiment140
# 解凍してできる training.1600000.processed.noemoticon.csv を
# ./data/text/ に入れる
tweetsDF = pd.read_csv("./data/text/training.1600000.processed.noemoticon.csv",
engine="python", header=None)
# %%
# 最初のいくつかを表示
tweetsDF.head()
# %%
# エントリー数
tweetsDF[0].value_counts()
# %%
tweetsDF["sentiment_cat"] = tweetsDF[0].astype('category')
tweetsDF["sentiment"] = tweetsDF["sentiment_cat"].cat.codes
tweetsDF.to_csv("train-processed.csv", header=None, index=None)
tweetsDF.sample(10000).to_csv("train-processed-sample.csv", header=None, index=None)
tweetsDF.tail()
# %%
LABEL = data.LabelField()
TWEET = data.Field(tokenize='spacy', lower=True)
fields = [('score',None), ('id',None),('date',None),('query',None),
('name',None),
('tweet', TWEET),('category',None),('label',LABEL)]
# %%
twitterDataset = torchtext.data.TabularDataset(
path="train-processed-sample.csv",
format="CSV",
fields=fields,
skip_header=False)
# %%
(train, test, valid)=twitterDataset.split(split_ratio=[0.6,0.2,0.2],stratified=True, strata_field='label')
(len(train),len(test),len(valid))
# %%
vocab_size = 20000
TWEET.build_vocab(train, max_size = vocab_size)
LABEL.build_vocab(train)
TWEET.vocab.freqs.most_common(10)
# %%
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train, valid, test),
batch_size = 32,
device = device,
sort_key = lambda x: len(x.tweet),
sort_within_batch = False)
# %%
class OurFirstLSTM(nn.Module):
def __init__(self, hidden_size, embedding_dim, vocab_size):
super(OurFirstLSTM, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.encoder = nn.LSTM(input_size=embedding_dim,
hidden_size=hidden_size, num_layers=1)
self.predictor = nn.Linear(hidden_size, 2)
def forward(self, seq):
print(seq.shape)
output, (hidden,_) = self.encoder(self.embedding(seq))
preds = self.predictor(hidden.squeeze(0))
return preds
model = OurFirstLSTM(100,300, 20002)
model.to(device)
# %%
optimizer = optim.Adam(model.parameters(), lr=2e-2)
criterion = nn.CrossEntropyLoss()
def train(epochs, model, optimizer, criterion, train_iterator, valid_iterator):
for epoch in range(1, epochs + 1):
training_loss = 0.0
valid_loss = 0.0
model.train()
for batch_idx, batch in enumerate(train_iterator):
optimizer.zero_grad()
predict = model(batch.tweet)
loss = criterion(predict,batch.label)
loss.backward()
optimizer.step()
training_loss += loss.data.item() * batch.tweet.size(0)
training_loss /= len(train_iterator)
model.eval()
for batch_idx,batch in enumerate(valid_iterator):
predict = model(batch.tweet)
loss = criterion(predict,batch.label)
valid_loss += loss.data.item() * batch.tweet.size(0)
valid_loss /= len(valid_iterator)
print('Epoch: {}, Training Loss: {:.2f}, Validation Loss: {:.2f}'.format(epoch, training_loss, valid_loss))
# %%
train(5, model, optimizer, criterion, train_iterator, valid_iterator)
# %%