-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_cutting.py
149 lines (118 loc) · 5.23 KB
/
demo_cutting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
import os
import shutil
import sys
import time
import cv2
import numpy as np
import tensorflow as tf
import imutils
from PIL import Image
sys.path.append(os.getcwd())
from nets import model_train as model
from util.rpn_msr.proposal_layer import proposal_layer
from util.text_connector.detectors import TextDetector
tf.app.flags.DEFINE_string('test_data_path', 'data/demo/', '')
tf.app.flags.DEFINE_string('output_path', 'data/res/', '')
tf.app.flags.DEFINE_string('gpu', '0', '')
tf.app.flags.DEFINE_string('checkpoint_path', 'checkpoints_mlt/', '')
FLAGS = tf.app.flags.FLAGS
def get_images():
files = []
exts = ['jpg', 'png', 'jpeg', 'JPG']
for parent, dirnames, filenames in os.walk(FLAGS.test_data_path):
for filename in filenames:
for ext in exts:
if filename.endswith(ext):
files.append(os.path.join(parent, filename))
break
print('Find {} images'.format(len(files)))
return files
def resize_image(img):
img_size = img.shape
im_size_min = np.min(img_size[0:2])
im_size_max = np.max(img_size[0:2])
im_scale = float(600) / float(im_size_min)
if np.round(im_scale * im_size_max) > 1200:
im_scale = float(1200) / float(im_size_max)
new_h = int(img_size[0] * im_scale)
new_w = int(img_size[1] * im_scale)
new_h = new_h if new_h // 16 == 0 else (new_h // 16 + 1) * 16
new_w = new_w if new_w // 16 == 0 else (new_w // 16 + 1) * 16
re_im = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
return re_im, (new_h / img_size[0], new_w / img_size[1])
def main(argv=None):
if os.path.exists(FLAGS.output_path):
shutil.rmtree(FLAGS.output_path)
os.makedirs(FLAGS.output_path)
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
with tf.get_default_graph().as_default():
input_image = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_image')
input_im_info = tf.placeholder(tf.float32, shape=[None, 3], name='input_im_info')
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
bbox_pred, cls_pred, cls_prob = model.model(input_image)
variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
saver = tf.train.Saver(variable_averages.variables_to_restore())
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
ckpt_state = tf.train.get_checkpoint_state(FLAGS.checkpoint_path)
model_path = os.path.join(FLAGS.checkpoint_path, os.path.basename(ckpt_state.model_checkpoint_path))
print('Restore from {}'.format(model_path))
saver.restore(sess, model_path)
im_fn_list = get_images()
for im_fn in im_fn_list:
print('===============')
print(im_fn)
start = time.time()
try:
im = cv2.imread(im_fn)[:, :, ::-1]
except:
print("Error reading image {}!".format(im_fn))
continue
img, (rh, rw) = resize_image(im)
h, w, c = img.shape
im_info = np.array([h, w, c]).reshape([1, 3])
bbox_pred_val, cls_prob_val = sess.run(
[bbox_pred, cls_prob],
feed_dict={input_image: [img], input_im_info: im_info}
)
textsegs, _ = proposal_layer(cls_prob_val, bbox_pred_val, im_info)
scores = textsegs[:, 0]
textsegs = textsegs[:, 1:5]
textdetector = TextDetector(DETECT_MODE='H')
boxes = textdetector.detect(textsegs, scores[:, np.newaxis], img.shape[:2])
boxes = np.array(boxes, dtype=np.int)
cost_time = (time.time() - start)
print("cost time: {:.2f}s".format(cost_time))
is_reverse, bbox = get_daxie_bbox(boxes, h)
if not bbox is None:
pil_image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
pil_image = pil_image.crop([bbox[0], bbox[1], bbox[4], bbox[5]])
if is_reverse == 1:
pil_image = pil_image.transpose(Image.ROTATE_180)
img = np.array(pil_image.convert('RGB'))[:, :, ::-1]
img = cv2.resize(img, None, None, fx=1.0 / rh, fy=1.0 / rw,
interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(FLAGS.output_path, os.path.basename(im_fn)), img[:, :, ::-1])
def get_daxie_bbox(bbox, h):
bbox_list = []
long_box = -1
long_index = -1
for i, box in enumerate(bbox):
long = abs(box[2] - box[0])
if long > long_box:
long_box = long
long_index = i
bbox_list.append(box[:8])
length = len(bbox_list)
if length == 0:
return 0, None
elif length == 1:
return 0, bbox_list[0]
elif length >= 2:
ret_bbox = bbox_list[long_index]
if ret_bbox[1] > abs(h - ret_bbox[-1]):
return 0, bbox_list[long_index]
else:
return 1, bbox_list[long_index]
if __name__ == '__main__':
tf.app.run()