Skip to content

Latest commit

 

History

History
104 lines (89 loc) · 5.96 KB

README.md

File metadata and controls

104 lines (89 loc) · 5.96 KB

Integrating Domain Knowledge into Transformer-based Approaches to Vulnerability Detection

TransVulDet is a Transformer-based Language Model for Vulnerability Detection aiming to better domain knowledge integration (e.g. CWE hierarchy) with source code datasets.

Dataset

Data Preprocessing & Visualization

  • For Big-Vul (MSR) dataset,
    • data_preprocessing/MSR_preprocessing.ipynb
  • For CVEfixes dataset, data collection by sql query and then preprocessing it
  • download 'CVEfixes_v1.0.7' and put CVEfixes_preprocessing.py in CVEfixes_v1.0.7/Examples and execute it. (data_preprocessing/CVEfixes_preprocessing.py)
  • For combining two dataset and reassign CWE IDs and split them into train_dataset(80%)/validation_dataset(10%)/test_dataset(10%) as well as balanced validation dataset,
    • data_preprocessing/assign_cwes_and_split_datasets.ipynb
  • To create Directed Acyclic Graph (DAG) for CWE Hierarchy,
    • data_preprocessing/preprocessing_paths_to_JSON.py : convert given cwe node paths to json file
    • src/graph.py : greate/plot the graph (DAG) and save figure

Model

Pre-trained Transformer-based Language Models

  • CodeBERT
  • GraphCodeBERT

Experiments

Model Configurations

Model Loss Function Loss Weights Classification Type
CodeBERT Cross Entropy, Focal Loss Default, Class Weights Non-Hierarchical
GraphCodeBERT Cross Entropy, Focal Loss Default, Class Weights Non-Hierarchical
CodeBERT with Hierarchical Classifier BCE (per node) Default, Equalize, Descendants, Reachable Leaf Nodes Hierarchical
GraphCodeBERT with Hierarchical Classifier BCE (per node) Default, Equalize, Descendants, Reachable Leaf Nodes Hierarchical

The CodeBERT/GraphCodeBERT with Hierarchical Classifier will be called 'hCodeBERT'/'hGraphCodeBERT' in Result section.

Hyperparameter Optimization (HPO)

run with main_hpo_sqlite.py, train with train_dataset.csv, test with test_dataset.cav validation with balanced_validation_set and balanced measure (macro f1-score)

Fine-tuning

run with main_train.py train with train_dataset.csv, test with test_dataset.cav validation with validation_set and normal measure (weighted f1-score)

Result

Evaluation Metrics for Binary/Multiclass Classification Tasks

  • run load_best_model_and_compute_metric.pyfor both binary/multiclass classification measures at once
  • Binary Classification Metrcs
  • Accuracy
  • Precision
  • Recall
  • F1-Score
  • Multiclass Classification Metrics
    • Accuracy
    • Balanced Accuracy
    • Weighted F1-Score
    • Macro F1-Score

Binary Classification Results

Model Accuracy Precision Recall F1-Score
CodeBERT-CE 26.08 0.00 0.00 0.00
GraphCodeBERT-CE 26.08 0.00 0.00 0.00
CodeBERT-FL 73.36 75.92 93.67 83.87
GraphCodeBERT-FL 73.81 76.54 93.10 84.01
hCodeBERT-default 69.62 80.00 78.52 79.26
hGraphCodeBERT-default 71.74 78.18 85.68 81.76
hCodeBERT-equalize 70.39 78.17 83.17 80.59
hGraphCodeBERT-equalize 69.01 78.11 80.70 79.38
hCodeBERT-descendants 70.26 79.93 79.81 79.87
hGraphCodeBERT-descendants 70.16 79.20 80.87 80.03
hCodeBERT-reachable_leaf_nodes 73.79 80.43 85.30 82.79
hGraphCodeBERT-reachable_leaf_nodes 69.14 79.22 78.96 79.09

Multiclass Classification Results

Model Accuracy Balanced Accuracy Macro F1-Score Weighted F1-Score
CodeBERT-CE 26.08 4.76 1.97 10.79
GraphCodeBERT-CE 26.08 4.76 1.97 10.79
CodeBERT-FL 15.80 13.38 11.31 18.39
GraphCodeBERT-FL 18.33 16.36 13.36 20.53
hCodeBERT-default 20.85 11.10 11.44 20.86
hGraphCodeBERT-default 18.91 8.47 9.59 20.07
hCodeBERT-equalize 20.02 12.19 11.76 19.86
hGraphCodeBERT-equalize 18.37 8.50 7.51 18.05
hCodeBERT-descendants 25.34 15.05 13.84 23.54
hGraphCodeBERT-descendants 20.86 10.01 10.33 20.87
hCodeBERT-reachable_leaf_nodes 22.14 12.60 12.45 23.10
hGraphCodeBERT-reachable_leaf_nodes 21.22 12.14 11.64 20.84