-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
188 lines (170 loc) ยท 7.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os,time
import numpy as np
import torch,gc
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
from EarlyStop import EarlyStopping # early stop์ ์ํ ํด๋์ค
import torchvision.transforms as T
from Dataset import getDataset
from model import getModel
def calc_accuracy(true,pred):
pred = F.softmax(pred, dim = 1)
true = torch.zeros(pred.shape[0], pred.shape[1]).scatter_(1, true.unsqueeze(1), 1.)
acc = (true.argmax(-1) == pred.argmax(-1)).float().detach().numpy()
acc = float((100 * acc.sum()) / len(acc))
return round(acc, 4)
def training_loop(n_epochs, patience,n_inputs=2):
train_loss, val_loss = [], []
train_accuracy, val_accuracy = [], []
# early_stopping object์ ์ด๊ธฐํ
early_stopping = EarlyStopping(patience = patience, verbose = True,path=MODEL_PATH)
for epoch in range(1,n_epochs+1):
start = time.time()
#Epoch Loss & Accuracy, Val Loss & Accuracy
train_epoch_loss, train_epoch_accuracy= [],[]
val_epoch_loss, val_epoch_accuracy = [], []
###################
# train the model #
###################
model.train()
for trainData in train_data_loader:
# reset Grads
optimizer.zero_grad()
if n_inputs == 1:
img, label = trainData
img, label = img.to(device), label.to(device)
output = model(img) # 1. Forward
elif n_inputs == 2:
imgL, imgR, label = trainData
imgL, imgR, label = imgL.to(device), imgR.to(device), label.to(device)
output = model(imgL,imgR) # 1. Forward
else:
imgL,imgR,imgF,label = trainData
imgL,imgR,imgF,label = imgL.to(device),imgR.to(device),imgF.to(device), label.to(device)
output = model(imgL,imgR,imgF) # 1. Forward
# 2. Calculate Accuracy
acc = calc_accuracy(label.cpu(),output.cpu())
#break
# 3. loss ๊ณ์ฐ & Backward. weights ์
๋ฐ์ดํธ
loss = loss_fn(output,label)
loss.backward()
optimizer.step()
#Append loss & acc
loss_val = loss.item()
train_epoch_loss.append(loss_val)
train_epoch_accuracy.append(acc)
train_epoch_loss, train_epoch_accuracy = np.mean(train_epoch_loss), np.mean(train_epoch_accuracy)
train_loss.append(train_epoch_loss)
train_accuracy.append(train_epoch_accuracy)
lr_scheduler.step()
###################
# valid the model #
###################
model.eval()
with torch.no_grad():
for validData in valid_data_loader:
if n_inputs == 1:
img, label = validData
img, label = img.to(device), label.to(device)
pred = model(img) # 1. Forward
elif n_inputs == 2:
imgL, imgR, label = validData
imgL, imgR, label = imgL.to(device), imgR.to(device), label.to(device)
pred = model(imgL,imgR) # 1. Forward
else:
imgL,imgR,imgF,label = validData
imgL,imgR,imgF,label = imgL.to(device),imgR.to(device),imgF.to(device), label.to(device)
pred = model(imgL,imgR,imgF) # 1. Forward
acc = calc_accuracy(label.cpu(), pred.cpu()) #Calculate Acc
loss = loss_fn(pred, label) #Calculate Loss
loss_value = loss.item()
val_epoch_loss.append(loss_value)
val_epoch_accuracy.append(acc)
val_epoch_loss, val_epoch_accuracy = np.mean(val_epoch_loss), np.mean(val_epoch_accuracy)
val_loss.append(val_epoch_loss)
val_accuracy.append(val_epoch_accuracy)
end = time.time()
#Print Epoch Statistics
print("** Epoch {} ** - Epoch Time {}s".format(epoch, int(end-start)))
print("Train Loss = {}".format(round(train_epoch_loss, 4)))
print("Train Accuracy = {} % \n".format(train_epoch_accuracy))
print("Val Loss = {}".format(round(val_epoch_loss, 4)))
print("Val Accuracy = {} % \n".format(val_epoch_accuracy))
early_stopping(val_epoch_loss, model,path_detail=str(epoch)+'.pt')
if early_stopping.early_stop:
print("Early stopping")
break
model.load_state_dict(torch.load(MODEL_PATH))
return model, train_loss, val_loss, train_accuracy, val_accuracy
def Visualizing_Loss_EarlyStoppingCheckpoint(train_loss, valid_loss, train_acc, valid_acc):
train_acc, valid_acc = [i/100 for i in train_acc], [i/100 for i in valid_acc]
print('=>',train_loss,valid_loss,train_acc,valid_acc)
# ํ๋ จ์ด ์งํ๋๋ ๊ณผ์ ์ ๋ฐ๋ผ loss๋ฅผ ์๊ฐํ
fig = plt.figure(figsize=(10,8))
plt.plot(range(1,len(train_loss)+1),train_loss, label='Training Loss')
plt.plot(range(1,len(valid_loss)+1),valid_loss,label='Validation Loss')
#plt.plot(range(1,len(train_acc)+1),train_acc, label='Training Acc')
#plt.plot(range(1,len(valid_acc)+1),valid_acc,label='Validation Acc')
# validation loss์ ์ต์ ๊ฐ ์ง์ ์ ์ฐพ๊ธฐ
minposs = valid_loss.index(min(valid_loss))+1
plt.axvline(minposs, linestyle='--', color='r',label='Early Stopping Checkpoint')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.ylim(0, 1) # ์ผ์ ํ scale
plt.xlim(0, len(valid_loss)+1) # ์ผ์ ํ scale
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
def init():
gc.collect()
torch.cuda.empty_cache()
transform_test = T.Compose([T.ToTensor()])
transform_train = T.Compose([
T.ToTensor(),
T.ColorJitter(hue=.05, saturation=.05),
T.RandomRotation(0.5)
])
#############################################################
## MAIN CODE ##
#############################################################
if __name__ == "__main__":
init()
N_INPUT = 2
MODEL = 'M5'
DIR_TRAIN = "./input/train/"
DIR_VALID = "./input/valid/"
MODEL_PATH = './MODEL/M5/epoch_'
DatasetList = {1:'SingleDataset',2:'DualDataset',3:'TripleDataset'}
train_dataset = getDataset(DatasetList[N_INPUT], DIR_TRAIN, transform_train)
valid_dataset = getDataset(DatasetList[N_INPUT], DIR_VALID, transform_test)
train_data_loader = DataLoader(
dataset = train_dataset,
batch_size = 10,
shuffle=True,
num_workers = 4,
)
valid_data_loader = DataLoader(
dataset = valid_dataset,
batch_size = 10,
shuffle=True,
num_workers = 4,
)
# 1. check CUDA or CPU
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
torch.cuda.empty_cache()
# 2. check MODEL
model = getModel(MODEL)
model = model.to(device)
# 3. check TRAIN_PARAMETER
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
#lr_scheduler = get_cosine_schedule_with_warmup(optimizer,5,0.3,0.01)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = 5, gamma = 0.75)
loss_fn=nn.CrossEntropyLoss() # ์์คํจ์ set
# 4. early stopping patience;
patience = 7 # validation loss๊ฐ ๊ฐ์ ๋ ๋ง์ง๋ง ์๊ฐ ์ดํ๋ก ์ผ๋ง๋ ๊ธฐ๋ค๋ฆด์ง ์ง์
model, train_loss, valid_loss, train_acc, valid_acc = training_loop(n_epochs=300,patience=patience,n_inputs=N_INPUT)
Visualizing_Loss_EarlyStoppingCheckpoint(train_loss, valid_loss, train_acc, valid_acc)
print('training finish')