-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
137 lines (124 loc) · 4.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary as summary_
import torchvision.models as models
from efficientnet_pytorch import EfficientNet
# 3x3 convolution with padding
def conv3x3(in_planes, out_planes, stride=1,groups=1,dilation=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
# 1x1 convolution
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class Bottleneck(nn.Module):
def __init__(self, in_dim, mid_dim, out_dim, down:bool = False, starting:bool=False) -> None:
super(Bottleneck,self).__init__()
if starting:
down = False
self.block = bottleneck_block(in_dim,mid_dim,out_dim,down=down)
self.relu = nn.ReLU(inplace=True)
if down:
conn_layer = nn.Conv2d(in_dim, out_dim, kernel_size=1, stride=2, padding=0) # size 줄어듬
else:
conn_layer = nn.Conv2d(in_dim, out_dim, kernel_size=1, stride=1, padding=0) # size 줄어들지 않음
self.changedim = nn.Sequential(
conn_layer,
nn.BatchNorm2d(out_dim)
)
def forward(self, x):
identity = self.changedim(x)
x = self.block(x)
x += identity
x = self.relu(x)
return x
def bottleneck_block(in_dim,mid_dim,out_dim,down=False):
layers =[]
if down:
layers.append(nn.Conv2d(in_dim, mid_dim, kernel_size=1, stride=2, padding=0))
else:
layers.append(nn.Conv2d(in_dim, mid_dim, kernel_size=1, stride=1, padding=0))
layers.extend([
nn.BatchNorm2d(mid_dim),
nn.ReLU(inplace=True),
nn.Conv2d(mid_dim, mid_dim, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(mid_dim),
nn.ReLU(inplace=True),
nn.Conv2d(mid_dim, out_dim, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(out_dim),
])
return nn.Sequential(*layers)
def make_layer(id_dim, mid_dim, out_dim, repeats, starting=False):
layers = []
layers.append(Bottleneck(id_dim,mid_dim,out_dim,down=True,starting=starting))
for _ in range(1,repeats):
layers.append(Bottleneck(out_dim, mid_dim, out_dim, down=False))
return nn.Sequential(*layers)
class M5(nn.Module): # => resnet50 custom
def __init__(self):
super(M5, self).__init__()
# conv1 : 7*7,64,2
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=64,kernel_size=7,stride=2,padding=3),
nn.BatchNorm2d(num_features=64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3,stride=2,padding=1)
)
base_dim = 64
self.layer2 = make_layer(base_dim, base_dim, base_dim*4, repeats=3, starting=True)
self.layer3 = make_layer(base_dim*4, base_dim*2, base_dim*8, repeats=4)
self.layer4 = make_layer(base_dim*8, base_dim*4, base_dim*16,repeats=6)
self.layer5 = make_layer(base_dim*16, base_dim*8, base_dim*32,repeats=3)
self.fc = nn.Linear(1384448,2) #692224 * 2
self.avgpool = nn.AvgPool2d((7,7),stride=1)
def convLayer(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
output = self.avgpool(out)
return output
def forward(self, imgL, imgR):
imgL = self.convLayer(imgL)
imgR = self.convLayer(imgR)
imgL = imgL.view(imgL.size(0),-1)
imgR = imgR.view(imgR.size(0),-1)
img = torch.concat((imgL,imgR),1)
img = self.fc(img)
return img
def conv_3_block(in_dim,out_dim):
model = nn.Sequential(
nn.Conv2d(in_dim,out_dim,kernel_size=3,padding=1),
nn.ReLU(),
nn.Conv2d(out_dim,out_dim,kernel_size=3,padding=1),
nn.ReLU(),
nn.Conv2d(out_dim,out_dim,kernel_size=3,padding=1),
nn.ReLU(),
nn.MaxPool2d(2,2)
)
return model
def conv_2_block(in_dim,out_dim):
model = nn.Sequential(
nn.Conv2d(in_dim,out_dim,kernel_size=3,padding=1),
nn.ReLU(),
nn.Conv2d(out_dim,out_dim,kernel_size=3,padding=1),
nn.ReLU(),
nn.MaxPool2d(2,2)
)
return model
def getModel(mName):
ModelList = {'M5':M5()}
if mName=='resnet50':
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs,2)
return model
elif mName=='efficientnet-b2':
return EfficientNet.from_pretrained('efficientnet-b2', num_classes=2)
elif mName =='efficientnet-v2':
return models.efficientnet_v2_s(weights='IMAGENET1K_V1')
else:
return ModelList[mName]
'''
summary_(model=M5().cuda(),input_size=[(3,512,512),(3,512,512)],batch_size=4)
'''