-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtest.py
executable file
·971 lines (753 loc) · 28.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
#!/usr/bin/env py.test
"""Test the python functionality of SEP."""
from __future__ import division, print_function
import os
import numpy as np
import pytest
from numpy.lib import recfunctions as rfn
from numpy.testing import assert_allclose, assert_approx_equal, assert_equal
import sep
# unicode_literals doesn't play well with numpy dtype field names
# Try to import any FITS reader
try:
from fitsio import read as getdata
NO_FITS = False
except:
try:
from astropy.io.fits import getdata
NO_FITS = False
except:
NO_FITS = True
IMAGE_FNAME = os.path.join("data", "image.fits")
BACKIMAGE_FNAME = os.path.join("data", "back.fits")
RMSIMAGE_FNAME = os.path.join("data", "rms.fits")
IMAGECAT_FNAME = os.path.join("data", "image.cat")
IMAGECAT_DTYPE = [
("number", np.int64),
("x", np.float64),
("y", np.float64),
("xwin", np.float64),
("ywin", np.float64),
("x2", np.float64),
("y2", np.float64),
("xy", np.float64),
("errx2", np.float64),
("erry2", np.float64),
("errxy", np.float64),
("a", np.float64),
("flux_aper", np.float64),
("fluxerr_aper", np.float64),
("kron_radius", np.float64),
("flux_auto", np.float64),
("fluxerr_auto", np.float64),
("flux_radius", np.float64, (3,)),
("flags", np.int64),
]
SUPPORTED_IMAGE_DTYPES = [np.float64, np.float32, np.int32]
# If we have a FITS reader, read in the necessary test images
if not NO_FITS:
image_data = getdata(IMAGE_FNAME)
image_refback = getdata(BACKIMAGE_FNAME)
image_refrms = getdata(RMSIMAGE_FNAME)
# -----------------------------------------------------------------------------
# Helpers
def assert_allclose_structured(x, y):
"""
Assert that two structured arrays are close.
Compares floats relatively and everything else exactly.
Parameters
----------
x, y : array-like
Structured arrays to be compared.
"""
assert x.dtype == y.dtype
for name in x.dtype.names:
if np.issubdtype(x.dtype[name], float):
assert_allclose(x[name], y[name])
else:
assert_equal(x[name], y[name])
def matched_filter_snr(data, noise, kernel):
r"""
Super slow implementation of matched filter SNR for testing.
At each output pixel :math:`i`, the value is:
.. math::
\frac{\sum(\text{data}[i] * \text{kernel}[i] / \text{noise}[i]^2)}
{\sqrt\sum(\text{kernel}[i]^2 / \text{noise}[i]^2)}
Parameters
----------
data : array-like
The 2D data to be tested.
noise : array-like
The noise corresponding to the input ``data``.
kernel : array-like
The kernel used for filtering.
Returns
-------
array-like
The output SNR array, the same size as ``data``.
"""
ctr = kernel.shape[0] // 2, kernel.shape[1] // 2
kslice = (
(0 - ctr[0], kernel.shape[0] - ctr[0]), # range in axis 0
(0 - ctr[1], kernel.shape[1] - ctr[1]),
) # range in axis 1
out = np.empty_like(data)
for y in range(data.shape[0]):
jmin = y + kslice[0][0] # min and max indicies to sum over
jmax = y + kslice[0][1]
kjmin = 0 # min and max kernel indicies to sum over
kjmax = kernel.shape[0]
# if we're over the edge of the image, limit extent
if jmin < 0:
offset = -jmin
jmin += offset
kjmin += offset
if jmax > data.shape[0]:
offset = data.shape[0] - jmax
jmax += offset
kjmax += offset
for x in range(data.shape[1]):
imin = x + kslice[1][0] # min and max indicies to sum over
imax = x + kslice[1][1]
kimin = 0 # min and max kernel indicies to sum over
kimax = kernel.shape[1]
# if we're over the edge of the image, limit extent
if imin < 0:
offset = -imin
imin += offset
kimin += offset
if imax > data.shape[1]:
offset = data.shape[1] - imax
imax += offset
kimax += offset
d = data[jmin:jmax, imin:imax]
n = noise[jmin:jmax, imin:imax]
w = 1.0 / n**2
k = kernel[kjmin:kjmax, kimin:kimax]
out[y, x] = np.sum(d * k * w) / np.sqrt(np.sum(k**2 * w))
return out
# -----------------------------------------------------------------------------
# Test versus Source Extractor results
@pytest.mark.skipif(NO_FITS, reason="no FITS reader")
def test_vs_sextractor():
"""
Test behavior of sep versus sextractor.
Note: we turn deblending off for this test. This is because the
deblending algorithm uses a random number generator. Since the sequence
of random numbers is not the same between sextractor and sep or between
different platforms, object member pixels (and even the number of objects)
can differ when deblending is on.
Deblending is turned off by setting DEBLEND_MINCONT=1.0 in the sextractor
configuration file and by setting deblend_cont=1.0 in sep.extract().
"""
data = np.copy(image_data) # make an explicit copy so we can 'subfrom'
bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)
# Test that SExtractor background is same as SEP:
bkgarr = bkg.back(dtype=np.float32)
assert_allclose(bkgarr, image_refback, rtol=1.0e-5)
# Test that SExtractor background rms is same as SEP:
rmsarr = bkg.rms(dtype=np.float32)
assert_allclose(rmsarr, image_refrms, rtol=1.0e-4)
# Extract objects (use deblend_cont=1.0 to disable deblending).
bkg.subfrom(data)
objs = sep.extract(data, 1.5, err=bkg.globalrms, deblend_cont=1.0)
objs = np.sort(objs, order=["y"])
# Read SExtractor result
refobjs = np.loadtxt(IMAGECAT_FNAME, dtype=IMAGECAT_DTYPE)
refobjs = np.sort(refobjs, order=["y"])
# Found correct number of sources at the right locations?
assert_allclose(objs["x"], refobjs["x"] - 1.0, atol=1.0e-3)
assert_allclose(objs["y"], refobjs["y"] - 1.0, atol=1.0e-3)
# Correct Variance and Variance Errors?
assert_allclose(objs["x2"], refobjs["x2"], atol=1.0e-4)
assert_allclose(objs["y2"], refobjs["y2"], atol=1.0e-4)
assert_allclose(objs["xy"], refobjs["xy"], atol=1.0e-4)
assert_allclose(objs["errx2"], refobjs["errx2"], rtol=1.0e-4)
assert_allclose(objs["erry2"], refobjs["erry2"], rtol=1.0e-4)
assert_allclose(objs["errxy"], refobjs["errxy"], rtol=1.0e-3)
# Test aperture flux
flux, fluxerr, flag = sep.sum_circle(
data, objs["x"], objs["y"], 5.0, err=bkg.globalrms
)
assert_allclose(flux, refobjs["flux_aper"], rtol=2.0e-4)
assert_allclose(fluxerr, refobjs["fluxerr_aper"], rtol=1.0e-5)
# check if the flags work at all (comparison values
assert ((flag & sep.APER_TRUNC) != 0).sum() == 4
assert ((flag & sep.APER_HASMASKED) != 0).sum() == 0
# Test "flux_auto"
kr, flag = sep.kron_radius(
data, objs["x"], objs["y"], objs["a"], objs["b"], objs["theta"], 6.0
)
flux, fluxerr, flag = sep.sum_ellipse(
data,
objs["x"],
objs["y"],
objs["a"],
objs["b"],
objs["theta"],
r=2.5 * kr,
err=bkg.globalrms,
subpix=1,
)
# For some reason, one object doesn't match. It's very small
# and kron_radius is set to 0.0 in SExtractor, but 0.08 in sep.
# Could be due to a change in SExtractor between v2.8.6 (used to
# generate "truth" catalog) and v2.18.11 (from which sep was forked).
i = 56 # index is 59 when deblending is on.
kr[i] = 0.0
flux[i] = 0.0
fluxerr[i] = 0.0
# We use atol for radius because it is reported to nearest 0.01 in
# reference objects.
assert_allclose(2.5 * kr, refobjs["kron_radius"], atol=0.01, rtol=0.0)
assert_allclose(flux, refobjs["flux_auto"], rtol=0.0005)
assert_allclose(fluxerr, refobjs["fluxerr_auto"], rtol=0.0005)
# Test using a mask in kron_radius and sum_ellipse.
for dtype in [np.bool_, np.int32, np.float32, np.float64]:
mask = np.zeros_like(data, dtype=dtype)
kr2, flag = sep.kron_radius(
data,
objs["x"],
objs["y"],
objs["a"],
objs["b"],
objs["theta"],
6.0,
mask=mask,
)
kr2[i] = 0.0
assert np.all(kr == kr2)
# Test ellipse representation conversion
cxx, cyy, cxy = sep.ellipse_coeffs(objs["a"], objs["b"], objs["theta"])
assert_allclose(cxx, objs["cxx"], rtol=1.0e-4)
assert_allclose(cyy, objs["cyy"], rtol=1.0e-4)
assert_allclose(cxy, objs["cxy"], rtol=1.0e-4)
a, b, theta = sep.ellipse_axes(objs["cxx"], objs["cyy"], objs["cxy"])
assert_allclose(a, objs["a"], rtol=1.0e-4)
assert_allclose(b, objs["b"], rtol=1.0e-4)
assert_allclose(theta, objs["theta"], rtol=1.0e-4)
# test round trip
cxx, cyy, cxy = sep.ellipse_coeffs(a, b, theta)
assert_allclose(cxx, objs["cxx"], rtol=1.0e-4)
assert_allclose(cyy, objs["cyy"], rtol=1.0e-4)
assert_allclose(cxy, objs["cxy"], rtol=1.0e-4)
# test flux_radius
fr, flags = sep.flux_radius(
data,
objs["x"],
objs["y"],
6.0 * refobjs["a"],
[0.1, 0.5, 0.6],
normflux=refobjs["flux_auto"],
subpix=5,
)
assert_allclose(fr, refobjs["flux_radius"], rtol=0.04, atol=0.01)
# test winpos
sig = 2.0 / 2.35 * fr[:, 1] # flux_radius = 0.5
xwin, ywin, flag = sep.winpos(data, objs["x"], objs["y"], sig)
assert_allclose(xwin, refobjs["xwin"] - 1.0, rtol=0.0, atol=0.0015)
assert_allclose(ywin, refobjs["ywin"] - 1.0, rtol=0.0, atol=0.0015)
# -----------------------------------------------------------------------------
# Background
def test_masked_background():
"""
Check the background filtering.
Check that the derived background is consistent with an explicit
mask, masking no pixels. Also check that the expected result is
returned if certain pixels are masked.
"""
data = 0.1 * np.ones((6, 6))
data[1, 1] = 1.0
data[4, 1] = 1.0
data[1, 4] = 1.0
data[4, 4] = 1.0
mask = np.zeros((6, 6), dtype=np.bool_)
# Background array without mask
sky = sep.Background(data, bw=3, bh=3, fw=1, fh=1)
bkg1 = sky.back()
# Background array with all False mask
sky = sep.Background(data, mask=mask, bw=3, bh=3, fw=1, fh=1)
bkg2 = sky.back()
# All False mask should be the same
assert_allclose(bkg1, bkg2)
# Masking high pixels should give a flat background
mask[1, 1] = True
mask[4, 1] = True
mask[1, 4] = True
mask[4, 4] = True
sky = sep.Background(data, mask=mask, bw=3, bh=3, fw=1, fh=1)
assert_approx_equal(sky.globalback, 0.1)
assert_allclose(sky.back(), 0.1 * np.ones((6, 6)))
@pytest.mark.skipif(NO_FITS, reason="no FITS reader")
def test_background_special():
"""
Test the special methods of `sep.Background`.
"""
bkg = sep.Background(image_data, bw=64, bh=64, fw=3, fh=3)
# test __array__ method
assert np.all(np.array(bkg) == bkg.back())
# test __rsub__ method
d1 = image_data - bkg
d2 = np.copy(image_data)
bkg.subfrom(d2)
assert np.all(d1 == d2)
def test_background_boxsize():
"""
Test that `sep.Background` works when boxsize is same as image.
"""
ny, nx = 100, 100
data = np.ones((ny, nx), dtype=np.float64)
bkg = sep.Background(data, bh=ny, bw=nx, fh=1, fw=1)
bkg.back()
def test_background_rms():
"""
Test that `sep.Background.rms` at least works.
"""
ny, nx = 1024, 1024
data = np.random.randn(ny, nx)
bkg = sep.Background(data)
rms = bkg.rms()
assert rms.dtype == np.float64
assert rms.shape == (ny, nx)
# -----------------------------------------------------------------------------
# Extract
@pytest.mark.skipif(NO_FITS, reason="no FITS reader")
def test_extract_with_noise_array():
"""
Test extraction with a flat noise array.
This checks that a constant noise array gives the same result as
extracting without a noise array, for a given threshold.
"""
# Get some background-subtracted test data:
data = np.copy(image_data)
bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)
bkg.subfrom(data)
# Ensure that extraction with constant noise array gives the expected
# result. We have to use conv=None here because the results are *not*
# the same when convolution is on! This is because the noise map is
# convolved. Near edges, the convolution doesn't adjust for pixels
# off edge boundaries. As a result, the convolved noise map is not
# all ones.
# Deblending is also turned off, as this appears to differ slightly
# across platforms - see `test_vs_sextractor()`.
objects = sep.extract(
data, 1.5 * bkg.globalrms, filter_kernel=None, deblend_cont=1.0
)
objects2 = sep.extract(
data,
1.5 * bkg.globalrms,
err=np.ones_like(data),
filter_kernel=None,
deblend_cont=1.0,
)
names_to_remove = ["errx2", "erry2", "errxy"]
names_to_keep = [i for i in objects.dtype.names if i not in names_to_remove]
objects = objects[names_to_keep]
objects2 = objects2[names_to_keep]
assert_allclose_structured(objects, objects2)
# Less trivial test where thresh is realistic. Still a flat noise map.
noise = bkg.globalrms * np.ones_like(data)
objects2 = sep.extract(data, 1.5, err=noise, filter_kernel=None, deblend_cont=1.0)
names_to_remove = ["errx2", "erry2", "errxy"]
names_to_keep = [i for i in objects.dtype.names if i not in names_to_remove]
objects = objects[names_to_keep]
objects2 = objects2[names_to_keep]
assert_allclose_structured(objects, objects2)
def test_extract_with_noise_convolution():
"""
Test extraction when there is both noise and convolution.
This will use the matched filter implementation, and will handle bad pixels
and edge effects gracefully.
"""
# Start with an empty image where we label the noise as 1 sigma everywhere.
image = np.zeros((20, 20))
error = np.ones((20, 20))
# Add some noise representing bad pixels. We do not want to detect these.
image[17, 3] = 100.0
error[17, 3] = 100.0
image[10, 0] = 100.0
error[10, 0] = 100.0
image[17, 17] = 100.0
error[17, 17] = 100.0
# Add some real point sources that we should find.
image[3, 17] = 10.0
image[6, 6] = 2.0
image[7, 6] = 1.0
image[5, 6] = 1.0
image[6, 5] = 1.0
image[6, 7] = 1.0
objects = sep.extract(image, 2.0, minarea=1, err=error)
objects.sort(order=["x", "y"])
# Check that we recovered the two correct objects and not the others.
assert len(objects) == 2
assert_approx_equal(objects[0]["x"], 6.0)
assert_approx_equal(objects[0]["y"], 6.0)
assert_approx_equal(objects[1]["x"], 17.0)
assert_approx_equal(objects[1]["y"], 3.0)
def test_extract_matched_filter_at_edge():
"""
Test bright source detection at the edge of an image.
Exercise bug where bright star at end of image not detected
with noise array and matched filter on.
"""
data = np.zeros((20, 20))
err = np.ones_like(data)
kernel = np.array([[1.0, 2.0, 1.0], [2.0, 4.0, 2.0], [1.0, 2.0, 1.0]])
data[18:20, 9:12] = kernel[0:2, :]
objects, pix = sep.extract(
data,
2.0,
err=err,
filter_kernel=kernel,
filter_type="matched",
segmentation_map=True,
)
assert len(objects) == 1
assert objects["npix"][0] == 6
@pytest.mark.skipif(NO_FITS, reason="no FITS reader")
def test_extract_with_mask():
"""
Test that object detection only occurs in unmasked regions.
"""
# Get some background-subtracted test data:
data = np.copy(image_data)
bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)
bkg.subfrom(data)
# mask half the image
ylim = data.shape[0] // 2
mask = np.zeros(data.shape, dtype=np.bool_)
mask[ylim:, :] = True
objects = sep.extract(data, 1.5 * bkg.globalrms, mask=mask)
# check that we found some objects and that they are all in the unmasked
# region.
assert len(objects) > 0
assert np.all(objects["y"] < ylim)
@pytest.mark.skipif(NO_FITS, reason="no FITS reader")
def test_extract_segmentation_map():
"""
Test the returned segmentation map.
Check that the segmentation map has the same dimensions as the input
image, and that the number of object pixels match the catalogue field.
"""
# Get some background-subtracted test data:
data = np.copy(image_data)
bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)
bkg.subfrom(data)
objects, segmap = sep.extract(data, 1.5 * bkg.globalrms, segmentation_map=True)
assert type(segmap) is np.ndarray
assert segmap.shape == data.shape
for i in range(len(objects)):
assert objects["npix"][i] == (segmap == i + 1).sum()
@pytest.mark.skipif(NO_FITS, reason="no FITS reader")
def test_extract_seg_map_array():
"""
Test the extraction when an existing segmentation map is supplied.
Test that the returned catalogue is equal with and without a variable
noise array, and that the majority of fields match even when
deblending is performed on the original extraction.
"""
# Get some background-subtracted test data:
data = np.copy(image_data)
bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)
bkg.subfrom(data)
noise = bkg.globalrms * np.ones_like(data)
for err in [None, noise]:
# err=None
# err=noise
objects, segmap = sep.extract(data, 1.5, err, segmentation_map=True)
assert type(segmap) is np.ndarray
assert segmap.shape == data.shape
for i in range(len(objects)):
assert objects["npix"][i] == (segmap == i + 1).sum()
objects2, segmap2 = sep.extract(data, 1.5, err, segmentation_map=segmap)
# Test the values for which we expect an exact match
names_exact_match = [
"thresh",
"npix",
"tnpix",
"xmin",
"xmax",
"ymin",
"ymax",
"cflux",
"flux",
"cpeak",
"peak",
"xcpeak",
"ycpeak",
"xpeak",
"ypeak",
]
# The position depends on the object being deblended. As no deblending
# is performed when a segmentation map is supplied, all derived
# parameters may vary slightly. We test those for which we have a
# measurement of the uncertainty
names_close = ["x", "y"]
names_close_var = ["x2", "y2"]
assert segmap2.shape == data.shape
for o_i, o_ii in zip(objects, objects2):
o_i_exact = o_i[names_exact_match]
o_ii_exact = o_ii[names_exact_match]
assert_equal(o_i_exact, o_ii_exact)
o_i_close = o_i[names_close]
o_ii_close = o_ii[names_close]
for n, v in zip(names_close, names_close_var):
if o_i["flag"] == 0:
assert_equal(o_i[n], o_ii[n])
else:
assert_allclose(o_i[n], o_ii[n], atol=np.sqrt(o_i[v]))
# Perform a second test with deblending disabled.
objects3, segmap3 = sep.extract(
data, 1.5, err, segmentation_map=True, deblend_cont=1.0
)
objects4, segmap4 = sep.extract(
data, 1.5, err, segmentation_map=segmap3, deblend_cont=1.0
)
# The flag will not be the same, as the second extraction does not test
# for deblended objects.
objects3 = rfn.drop_fields(objects3, "flag")
objects4 = rfn.drop_fields(objects4, "flag")
assert_allclose_structured(objects3, objects4)
# -----------------------------------------------------------------------------
# aperture tests
naper = 1000
x = np.random.uniform(200.0, 800.0, naper)
y = np.random.uniform(200.0, 800.0, naper)
data_shape = (1000, 1000)
def test_aperture_dtypes():
"""
Test the aperture extraction of multiple data types.
Ensure that all supported image dtypes work in sum_circle() and
give the same answer.
"""
r = 3.0
fluxes = []
for dt in SUPPORTED_IMAGE_DTYPES:
data = np.ones(data_shape, dtype=dt)
flux, fluxerr, flag = sep.sum_circle(data, x, y, r)
fluxes.append(flux)
for i in range(1, len(fluxes)):
assert_allclose(fluxes[0], fluxes[i])
def test_apertures_small_ellipse_exact():
"""Regression test for a bug that manifested primarily when x == y."""
data = np.ones(data_shape)
r = 0.3
rtol = 1.0e-10
flux, fluxerr, flag = sep.sum_ellipse(data, x, x, r, r, 0.0, subpix=0)
assert_allclose(flux, np.pi * r**2, rtol=rtol)
def test_apertures_all():
"""
Test that aperture subpixel sampling works.
"""
data = np.random.rand(*data_shape)
r = 3.0
rtol = 1.0e-8
for subpix in [0, 1, 5]:
flux_ref, fluxerr_ref, flag_ref = sep.sum_circle(data, x, y, r, subpix=subpix)
flux, fluxerr, flag = sep.sum_circann(data, x, y, 0.0, r, subpix=subpix)
assert_allclose(flux, flux_ref, rtol=rtol)
flux, fluxerr, flag = sep.sum_ellipse(data, x, y, r, r, 0.0, subpix=subpix)
assert_allclose(flux, flux_ref, rtol=rtol)
flux, fluxerr, flag = sep.sum_ellipse(
data, x, y, 1.0, 1.0, 0.0, r=r, subpix=subpix
)
assert_allclose(flux, flux_ref, rtol=rtol)
def test_apertures_exact():
"""
Test area as measured by exact aperture modes on array of ones.
"""
theta = np.random.uniform(-np.pi / 2.0, np.pi / 2.0, naper)
ratio = np.random.uniform(0.2, 1.0, naper)
r = 3.0
for dt in SUPPORTED_IMAGE_DTYPES:
data = np.ones(data_shape, dtype=dt)
for r in [0.5, 1.0, 3.0]:
flux, fluxerr, flag = sep.sum_circle(data, x, y, r, subpix=0)
assert_allclose(flux, np.pi * r**2)
rout = r * 1.1
flux, fluxerr, flag = sep.sum_circann(data, x, y, r, rout, subpix=0)
assert_allclose(flux, np.pi * (rout**2 - r**2))
flux, fluxerr, flag = sep.sum_ellipse(
data, x, y, 1.0, ratio, theta, r=r, subpix=0
)
assert_allclose(flux, np.pi * ratio * r**2)
rout = r * 1.1
flux, fluxerr, flag = sep.sum_ellipann(
data, x, y, 1.0, ratio, theta, r, rout, subpix=0
)
assert_allclose(flux, np.pi * ratio * (rout**2 - r**2))
def test_aperture_bkgann_overlapping():
"""
Test bkgann functionality in circular & elliptical apertures.
"""
# If bkgann overlaps aperture exactly, result should be zero
# (with subpix=1)
data = np.random.rand(*data_shape)
r = 5.0
f, _, _ = sep.sum_circle(data, x, y, r, bkgann=(0.0, r), subpix=1)
assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13)
f, _, _ = sep.sum_ellipse(
data, x, y, 2.0, 1.0, np.pi / 4.0, r=r, bkgann=(0.0, r), subpix=1
)
assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13)
def test_aperture_bkgann_ones():
"""
Test bkgann functionality with flat data.
"""
data = np.ones(data_shape)
r = 5.0
bkgann = (6.0, 8.0)
# On flat data, result should be zero for any bkgann and subpix
f, fe, _ = sep.sum_circle(data, x, y, r, bkgann=bkgann, gain=1.0)
assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13)
# for all ones data and no error array, error should be close to
# sqrt(Npix_aper + Npix_ann * (Npix_aper**2 / Npix_ann**2))
aper_area = np.pi * r**2
bkg_area = np.pi * (bkgann[1] ** 2 - bkgann[0] ** 2)
expected_error = np.sqrt(aper_area + bkg_area * (aper_area / bkg_area) ** 2)
assert_allclose(fe, expected_error, rtol=0.1)
f, _, _ = sep.sum_ellipse(data, x, y, 2.0, 1.0, np.pi / 4.0, r, bkgann=bkgann)
assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13)
def test_masked_segmentation_measurements():
"""
Test measurements with segmentation masking.
"""
NX = 100
data = np.zeros((NX * 2, NX * 2))
yp, xp = np.indices(data.shape)
####
# Make two 2D gaussians that slightly overlap
# width of the 2D objects
gsigma = 10.0
# offset between two gaussians in sigmas
off = 4
for xy in [[NX, NX], [NX + off * gsigma, NX + off * gsigma]]:
R = np.sqrt((xp - xy[0]) ** 2 + (yp - xy[1]) ** 2)
g_i = np.exp(-(R**2) / 2 / gsigma**2)
data += g_i
# Absolute total
total_exact = g_i.sum()
# Add some noise
rms = 0.02
np.random.seed(1)
data += np.random.normal(size=data.shape) * rms
# Run source detection
objs, segmap = sep.extract(
data, thresh=1.2, err=rms, mask=None, segmentation_map=True
)
seg_id = np.arange(1, len(objs) + 1, dtype=np.int32)
# Compute Kron/Auto parameters
x, y, a, b = objs["x"], objs["y"], objs["a"], objs["b"]
theta = objs["theta"]
kronrad, krflag = sep.kron_radius(data, x, y, a, b, theta, 6.0)
flux_auto, fluxerr, flag = sep.sum_ellipse(
data, x, y, a, b, theta, 2.5 * kronrad, segmap=segmap, seg_id=seg_id, subpix=1
)
# Test total flux
assert_allclose(flux_auto, total_exact, rtol=5.0e-2)
# Flux_radius
for flux_fraction in [0.2, 0.5]:
# Exact solution
rhalf_exact = np.sqrt(-np.log(1 - flux_fraction) * gsigma**2 * 2)
# Masked measurement
flux_radius, flag = sep.flux_radius(
data,
x,
y,
6.0 * a,
flux_fraction,
seg_id=seg_id,
segmap=segmap,
normflux=flux_auto,
subpix=5,
)
# Test flux fraction
assert_allclose(flux_radius, rhalf_exact, rtol=5.0e-2)
if False:
print("test_masked_flux_radius")
print(total_exact, flux_auto)
print(rhalf_exact, flux_radius)
def test_mask_ellipse():
"""
Test that the correct number of elements are masked with an ellipse.
"""
arr = np.zeros((20, 20), dtype=np.bool_)
# should mask 5 pixels:
sep.mask_ellipse(arr, 10.0, 10.0, 1.0, 1.0, 0.0, r=1.001)
assert arr.sum() == 5
# should mask 13 pixels:
sep.mask_ellipse(arr, 10.0, 10.0, 1.0, 1.0, 0.0, r=2.001)
assert arr.sum() == 13
def test_flux_radius():
"""
Test that the correct radius is returned for varying flux fractions.
"""
data = np.ones(data_shape)
fluxfrac = [0.2**2, 0.3**2, 0.7**2, 1.0]
true_r = [2.0, 3.0, 7.0, 10.0]
r, _ = sep.flux_radius(
data, x, y, 10.0 * np.ones_like(x), [0.2**2, 0.3**2, 0.7**2, 1.0], subpix=5
)
for i in range(len(fluxfrac)):
assert_allclose(r[:, i], true_r[i], rtol=0.01)
def test_mask_ellipse_alt():
"""
Mask_ellipse with cxx, cyy, cxy parameters.
"""
arr = np.zeros((20, 20), dtype=np.bool_)
# should mask 5 pixels:
sep.mask_ellipse(arr, 10.0, 10.0, cxx=1.0, cyy=1.0, cxy=0.0, r=1.001)
assert arr.sum() == 5
# should mask 13 pixels:
sep.mask_ellipse(arr, 10.0, 10.0, cxx=1.0, cyy=1.0, cxy=0.0, r=2.001)
assert arr.sum() == 13
# -----------------------------------------------------------------------------
# General behavior and utilities
def test_byte_order_exception():
"""
Test that SEP will not run with non-native byte order.
Test that error about byte order is raised with non-native
byte order input array. This should happen for Background, extract,
and aperture functions.
"""
data = np.ones((100, 100), dtype=np.float64)
data = data.view(data.dtype.newbyteorder("S"))
with pytest.raises(ValueError) as excinfo:
bkg = sep.Background(data)
assert "byte order" in excinfo.value.args[0]
def test_set_pixstack():
"""
Ensure that setting the pixel stack size works.
"""
old = sep.get_extract_pixstack()
new = old * 2
sep.set_extract_pixstack(new)
assert new == sep.get_extract_pixstack()
sep.set_extract_pixstack(old)
def test_set_sub_object_limit():
"""
Ensure that setting the sub-object deblending limit works.
"""
old = sep.get_sub_object_limit()
new = old * 2
sep.set_sub_object_limit(new)
assert new == sep.get_sub_object_limit()
sep.set_sub_object_limit(old)
def test_long_error_msg():
"""
Test the error handling in SEP.
Ensure that the error message is created successfully when
there is an error detail.
"""
# set extract pixstack to an insanely small value; this will trigger
# a detailed error message when running sep.extract()
old = sep.get_extract_pixstack()
sep.set_extract_pixstack(5)
data = np.ones((10, 10), dtype=np.float64)
with pytest.raises(Exception) as excinfo:
sep.extract(data, 0.1)
msg = excinfo.value.args[0]
assert type(msg) == str # check that message is the native string type
assert msg.startswith("internal pixel buffer full: The limit")
# restore
sep.set_extract_pixstack(old)