-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresearch-statement.html
586 lines (585 loc) · 259 KB
/
research-statement.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
<!DOCTYPE html>
<!-- Created by pdf2htmlEX (https://github.com/pdf2htmlEX/pdf2htmlEX) -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-K3B3NZKEEL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-K3B3NZKEEL');
</script>
<!--Start of Tawk.to Script-->
<script type="text/javascript">
var Tawk_API=Tawk_API||{}, Tawk_LoadStart=new Date();
(function(){
var s1=document.createElement("script"),s0=document.getElementsByTagName("script")[0];
s1.async=true;
s1.src='https://embed.tawk.to/6679f68f9d7f358570d2ec6f/1i166m88j';
s1.charset='UTF-8';
s1.setAttribute('crossorigin','*');
s0.parentNode.insertBefore(s1,s0);
})();
</script>
<!--End of Tawk.to Script-->
<link rel="icon" type="image/x-icon" href="favicon.ico">
<title>Research Statement – Sean I Young, PhD</title>
<meta charset="utf-8"/>
<meta name="generator" content="pdf2htmlEX"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
<style type="text/css">
/*!
* Base CSS for pdf2htmlEX
* Copyright 2012,2013 Lu Wang <[email protected]>
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/#sidebar{position:absolute;top:0;left:0;bottom:0;width:250px;padding:0;margin:0;overflow:auto}#page-container{position:absolute;top:0;left:0;margin:0;padding:0;border:0}@media screen{#sidebar.opened+#page-container{left:250px}#page-container{bottom:0;right:0;overflow:auto}.loading-indicator{display:none}.loading-indicator.active{display:block;position:absolute;width:64px;height:64px;top:50%;left:50%;margin-top:-32px;margin-left:-32px}.loading-indicator img{position:absolute;top:0;left:0;bottom:0;right:0}}@media print{@page{margin:0}html{margin:0}body{margin:0;-webkit-print-color-adjust:exact}#sidebar{display:none}#page-container{width:auto;height:auto;overflow:visible;background-color:transparent}.d{display:none}}.pf{position:relative;background-color:white;overflow:hidden;margin:0;border:0}.pc{position:absolute;border:0;padding:0;margin:0;top:0;left:0;width:100%;height:100%;overflow:hidden;display:block;transform-origin:0 0;-ms-transform-origin:0 0;-webkit-transform-origin:0 0}.pc.opened{display:block}.bf{position:absolute;border:0;margin:0;top:0;bottom:0;width:100%;height:100%;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}.bi{position:absolute;border:0;margin:0;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}@media print{.pf{margin:0;box-shadow:none;page-break-after:always;page-break-inside:avoid}@-moz-document url-prefix(){.pf{overflow:visible;border:1px solid #fff}.pc{overflow:visible}}}.c{position:absolute;border:0;padding:0;margin:0;overflow:hidden;display:block}.t{position:absolute;white-space:pre;font-size:1px;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%;unicode-bidi:bidi-override;-moz-font-feature-settings:"liga" 0}.t:after{content:''}.t:before{content:'';display:inline-block}.t span{position:relative;unicode-bidi:bidi-override}._{display:inline-block;color:transparent;z-index:-1}::selection{background:rgba(127,255,255,0.4)}::-moz-selection{background:rgba(127,255,255,0.4)}.pi{display:none}.d{position:absolute;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%}.it{border:0;background-color:rgba(255,255,255,0.0)}.ir:hover{cursor:pointer}</style>
<style type="text/css">
/*!
* Fancy styles for pdf2htmlEX
* Copyright 2012,2013 Lu Wang <[email protected]>
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/@keyframes fadein{from{opacity:0}to{opacity:1}}@-webkit-keyframes fadein{from{opacity:0}to{opacity:1}}@keyframes swing{0{transform:rotate(0)}10%{transform:rotate(0)}90%{transform:rotate(720deg)}100%{transform:rotate(720deg)}}@-webkit-keyframes swing{0{-webkit-transform:rotate(0)}10%{-webkit-transform:rotate(0)}90%{-webkit-transform:rotate(720deg)}100%{-webkit-transform:rotate(720deg)}}@media screen{#sidebar{background-color:#2f3236;background-image:url("")}#outline{font-family:Georgia,Times,"Times New Roman",serif;font-size:13px;margin:2em 1em}#outline ul{padding:0}#outline li{list-style-type:none;margin:1em 0}#outline li>ul{margin-left:1em}#outline a,#outline a:visited,#outline a:hover,#outline a:active{line-height:1.2;color:#e8e8e8;text-overflow:ellipsis;white-space:nowrap;text-decoration:none;display:block;overflow:hidden;outline:0}#outline a:hover{color:#0cf}#page-container{background-color:#9e9e9e;background-image:url("");-webkit-transition:left 500ms;transition:left 500ms}.pf{margin:13px auto;box-shadow:1px 1px 3px 1px #333;border-collapse:separate}.pc.opened{-webkit-animation:fadein 100ms;animation:fadein 100ms}.loading-indicator.active{-webkit-animation:swing 1.5s ease-in-out .01s infinite alternate none;animation:swing 1.5s ease-in-out .01s infinite alternate none}.checked{background:no-repeat url()}}</style>
<style type="text/css">
.ff0{font-family:sans-serif;visibility:hidden;}
@font-face{font-family:ff1;src:url('data:application/font-woff;base64,d09GRgABAAAAAAQ0AA4AAAAABjgAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEGAAAABwAAAAcYB+le0dERUYAAAP8AAAAGwAAAB4AJwALT1MvMgAAAbQAAAA+AAAAVmClZ69jbWFwAAACCAAAAD8AAAFCAA8Gy2N2dCAAAAJIAAAABAAAAAQARAURZ2FzcAAAA/QAAAAIAAAACP//AANnbHlmAAACWAAAAHoAAACEJzg3oGhlYWQAAAFEAAAANQAAADbpdS/eaGhlYQAAAXwAAAAbAAAAJApWBgZobXR4AAAB9AAAABQAAAAUDZYBRGxvY2EAAAJMAAAADAAAAAwAWACabWF4cAAAAZgAAAAaAAAAIAAIADduYW1lAAAC1AAAAPcAAAINAkBnwXBvc3QAAAPMAAAAJgAAADWc2cgFeJxjYGRgYABiq76Ohnh+m68M8hwMILBMTvgmiL734OJmBhcGBlYG1lAgl4OBCSQKABMJCTgAAAB4nGNgZGBgDWUAAjYQwcDKwMDIgApYAQxIAG0AeJxjYGRgYGBl4GBgYgABRgYE0AMRAAKzAEAAAHicY2BkYmCcwMDKwMBqzDqTgYFRDkIzX2dIYxJiYGBiYGVmgAFGBiQQkOaaAqQUGBRYQ0F8CAlRAwAyyQYYAAAC7ABEAAAAAAKqAAACAAAABgABAHicY2BgYGaAYBkGRgYQsAHyGMF8FgYFIM0ChCC+wv//EPL/Y6hKBkY2BhiTgZEJSDAxoAJGiNHDGQAAYuoG3QAARAURAAAALAAsACwALABCeJxjYGJwYWBgSmENZWBmYGfQ28jIoG+ziZ2F4a3RRjbWOzabmJmATIaNzCBhVpDwJnY2xj82mxhB4saCioKqioKKLkwK/1QYZ/zLYA39tdqF5SwD0EhGIMEKhGBzGRShKhkZWBj+KDAf+OPAyvCbQYHlAFAVAGmUHCcAAHicnY+xasMwEIY/JU5KIXTI0o4eQpfgYIsm0AyFeAh0bIZMXQwVxsTYYCd5lL5G36jP0t+O6NKlROLQx+nTnQ6Y8ImhW4Ypj54H3PDqeciCL88BUxN4HjExieex8h8yTXCrzKx/1fGAO549D3nnzXMg59vziAdz73nMzLyw+d0pc0VGywFHw5mCUtvBplvpPM3ag2vORVkqt9NFzklCJpmdy09lJthSU3Hsz0aGI8RqrFjnWvGfhhczYUnESmH12vKk4nV13NZN7kK7iMN1+PdjSibLaBXZ2Mq/erp9L7WSumm6v1wmYO+atqirMFH/6+v/AKuzUi0AeJxjYGIAg//GDGkM2AArEDMyMDEwMzJx+CXmpvqm6hkAAFSYBEIAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIWMAbxGAADygAzAAAAAAEAAAAA2yC/7gAAAACmHhPZAAAAAN7g0bM=')format("woff");}.ff1{font-family:ff1;line-height:0.666504;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff2;src:url('data:application/font-woff;base64,d09GRgABAAAAADnsAA8AAAAAaqwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAA50AAAABwAAAAceZ+0E0dERUYAADm0AAAAHAAAAB4AJwBBT1MvMgAAAdAAAABFAAAAVmJPCF1jbWFwAAAC6AAAANoAAAGqjA7FWmN2dCAAABIYAAADPQAABow//l39ZnBnbQAAA8QAAAUIAAAJE6HqQqxnbHlmAAAV0AAAInQAADxMU7XirWhlYWQAAAFYAAAANgAAADYEHXBXaGhlYQAAAZAAAAAgAAAAJAv5Bb1obXR4AAACGAAAANAAAADs4ZcS7WxvY2EAABVYAAAAeAAAAHiby6tSbWF4cAAAAbAAAAAgAAAAIA2pAdBuYW1lAAA4RAAAAPsAAAIZD/72TXBvc3QAADlAAAAAdAAAAKGkMs10cHJlcAAACMwAAAlJAAAW4flAynMAAQAAAAYzMxD9mKFfDzz1AB8IAAAAAAC763zMAAAAAOKTd1j/9f5zBnEFkAAAAAgAAgAAAAAAAHicY2BkYGCd8G8yAwPbv/9f/39gK2QAiqAAawC62AfCAAEAAAA7AGAABQAAAAAAAgAQAC8AYAAADPgBPwAAAAB4nGNgZH7LOIGBlYGB1Zh1JgMDoxyEZr7OkMYkxMDAxMDKzAAGDUBJBiQQkOaaAqQUFIRZJ/ybDNQ/gTGXAaoGALpNCg4AAAB4nB2OMUuCURSGH+899xtExOkTaQmcGh3FQRDJNKmWwLGaBEcnB79wavFu/QrxF/gHJBocpV/Q0pjSENmrBx4O5+Gcw+u+aKNyC8ht1J8ZiUdXouzGNFyVqRWpi1cxEPeiZR+UbUq0BrchT/SfYkkMFbqhQNRdtAe5J2LyJ38phtxZS34m/0bT7ymEOnNbkdoFJf9Nxw+4sj7XltBzL1T8O2eas9wPI7899SyZkR2d3Zx2Myfva3TdWpn6TPQ7DXuqynOu+9T/HnbKzD+/BTFJeJxjYGBgZoBgGQZGBhBYAuQxgvksDB1AWo5BACjCx6DAoMmgx2DMYMngyRDAEMYQyZDIkMlQwFCpIPz/P1CdAoMGgw6DAVDekcGbIQgsn8yQzVAEkv//+P+d/7f+3/x/5f/Z/2f+n/5/8v+h/wf/H/i//4Ea1F48gJGNAa6IkQlIMKErgHgBBFhYGRjY2DkYOLm4ecACvFAJPn4BQSFhEVExBnEJSSlpGQZZOXkFRQYGJai8MoOKqpq6hqYWg7aOrp6+AYOhkbGJqZm5BSHXkQcsSVQPAGWKLJcAAHicfVVNb9tGEF1SkiVLFsoEaWCAhyy7oWBDUlw0aeu6rsNKpCxFSWtZMrB00pa0pEC+5RS0QQvo5oBpf0evo/Qi31Kg1/yHHHpsjjm7M0tSsI20BGXuvPl6OzO7dlo/fP/do4eHvjwY9Pd7e99+8+B+916nvdvy3Gbja+fuzlfbX259sfn5Z59u3KrX1ir2TfHRjdVrV4wPyqXiciG/lMtmdI3VPNEKOFQCyFZEu10nWYQIhOeAADhCrYs2wANlxi9aOmj5+JKlE1s6C0vN4Ntsu17jnuDw2hV8rh32JK5/c4XP4a1aP1DrbEUJZRQsCz24tzpxOWgB96D1dBJ5gYvxZqViUzTHxXqNzYolXJZwBWviyUxb29HUQl/ztmY6K5QpLWRsLxzBXk96rmlZvsJYU8WCpSbkVSx+TJzZCz6rvYp+nRvsKKiujMQofCQhE6JTlPGi6ASuVGFduLD+7O9V3PIYasL1oCowWHd/kUCDnG0IHr1jSF68/eciEibIkm28Y7SkLS7KhPp0zZAbMsT9WRZxeTF32BEKMO3JWObsyHzJnI2qD3pAmlep5sMD0kxTzcI9EBa1yguS9+lkFaZHvF7D6qvXxhf1HDKV4Gg4oW84joTrxnUbSHBcXDhhsldv9vEG2ocBbuKYytCTsCGewDXRiA0Q4NSD475ULokbXGsCC4aJF2x4LvHiXhS4MUGKJXrylN0+ezO7w80/brM7zCcecL2JTal4kRw9hhuBOcL5fMylaYHjY/l8Icc+dUkYsP4G01kqo/LCvV2yTo1p53m7wKVuZnzqFgK8hX9EYxsVBrZLidTRxjaXmslSM8ySWNDqQhwUMnazTaoMuTbbpuVb8fM/lMyEU86GwrlYBgILTnGe/6QWWxOhde6N3XMELwTNJQSTaO/nqVMtksToUaB2tlNVxsaTi5iOYRREXVzlwPa4FGPhC5whZ0/S3qjWqr/dvuj2DqXqdjIlgwtSrN+MJWAWqlNBb+IMtqpm2lYl7yp5IbYvqTupmkcF0e1HFFwkARnHE4SbXqp0whebV+/g0Wzh7SZaoeAGb0Xh/Gx6FM0cJ3riBZMtiiE6o0j05bapuO7LX8xnlOoq62rdQaNew7unMRPa897M0Z73D+WpwRh/PpAvdU1vBg1/dhN18pQz5ihUJ5RAEjgJFGkfhYKyN08dxqZKm1WAkodzjSmskGIaG871GDNSTEcsG2OOwujBJq1OsMR43Xp8RO352Z9EgU+Hi13HVuKrgSZ2GOhiZ6bpSytQFOMGlESD8LuE343xJcLzOBjadQ2LQ3dSFAi8p3CgJDO1eBQzFJLPz84G0nptvvUtHLVH+DuUsFzFuz9n30O7XfoFCO/CdBgSD3YgyTdvd4Y+jm0aEE06sIwRlpMIaNFSPjSO6DTE3mADlf8UBZj64FcpqTz21TgbwNpiC9sex8xVKNGGH10Vn6iziUehaJ/QZxm5sb6MERNFTObHRcqvIPOhQNUw4FjtLBv2cdTju7RoxsgYr8RsZax+RTNRMtpWxi6Vi7B8CwPiS+vSLTqSOTvv+zF5JZ0kBpjbgBIyqpwrZeKA1UFVh7jge4JUyfRPCtObs33xI94sRFpFyqMaynYnxMs/9i8hIjZT5wLdEaUkxl8xmqedr2DdM/Zgfva7+Mk699Rrgv450GAy8xQHm/nRZQAeVuu1wmW0rOAoKpTf7xDXq1BefBH8F+H1gLJ4nOXXeVwUdQPH8Tnw4FwxQFGWxStLbL0VxXLxWElSPBgTPLC0tMyWFjZLI6i07FCs7LTSzM6twNEK86zsPrSy00orO62wsrvk+S6f/nj+6d+ePx5efPa989vf/GaYGTzcePtwgdceZZhGvl2g12vtvsYaZRlxdh9jrqpS+1ScfZLdy8gzfHbvv821e7l5vu47tblBbVZ28y4NdusZ3NLyJisnWDDHHm7k2fmGYw+TQ2WeHCIHy0FyoBwgu8musovMMRwj1w7ojBbEXu2T+Uxb+RrrbvczSpTV8m7g31tHVZyRZvc0RqtDytZZ99QcRqrUUrVa7VNHVVudeletOFBHNLVvjmbnaHaOVszRHjnaI8dobf3mZnt9jdavbnau+MXN7i1+hp/gKJ/9yNYP8D0cgSb4jpnfwjcMHoav4Sv4Er6Az+EzOORmx4tP2foEPna97cVB15spDrjePuIj+BA+gP1MeZ+t9+BdeAfehrdgH7wJb8DrsBf2wGucxKvwCrwML3HYF5n5AjwPz8GzsBuegafhKdgFO1lzB2xncBtshSdhCzTCE/A4PAabYRO4sNHN6i8aoN7NGiAehUfgYYjCQ25WP/EgPMB+98N9cC9sgHtgPbvfDetgLdwFd8IdLL0Gbmf32+BWuAVuhpvYbzXcCDfA9bAK6mAlS69g9+vgWrgGrobl7HAVXAnLYClcAZe7nQeKy6AWauBSqIZLYAkshovhIlgEF0IEqqASwnABVEDI7TRInA8L4TxYAOfCOTAf5sHZcBbMhTlwJpwBs6EcZsFMmAHToQxK3cwhYhqcDlPBgRKYApNhEkyEYpgA4+E0KIJxcCoUwlgIwhgYDaNgJBRAAEbAKXAyDId8GAZD3Y5DRR4MgcEwCAbCAOgP/aBvC7bpdvRrqw+DfjgJekMu9IIT4QToCcdDD7dDvugO3dwOsQe6q9thmOjCYA74IBu8kAWdoRNkQkfoABmQzhHSOMJxDLaHVGgHHkiBZEiCREiAeNZsC20YbA2tIA5ssMAEowWzGY7BX/An/AG/w2/wK/zScljz55afyPyJwaPwI/wA38MRaILv4Fv4Bg7D1/AVfAlfcLzP3Yxu4jM45GboATM/hU/cjDzxMRx0M0aJA27GaPERfAgfuBljxH43Iyjeh/fgXZZ+B95msbdYbB+8CW+w2Ovstxf2wGvwKrwCL7PfSyz9IrzAyT8Pz3G8Z92MkWI3OzzDgZ7mrJ9isV2wE3bAdtgGW+FJlt7C0o0s/QRLPw6PwWYOtAlc2MhhG6AeHmXpR+BhiMJD8KCbrj93zQfc9AJxP9znpo8X97rpE8QGN71Y3OOmTxbr3fSAuJsp65iylil3MeVOPruDmWvYup2Zt8Gt7HAL3OymTxQ3sftquBFu4JSuZ+YqZtbBSjd9kljBzOvgWrjGTZsmrnbTSsVyN22GuMpNmymudNPGiWVu2nSxlM+uYOblTLksUC+PeMb4mlIKfQeTJvieVk+pXWpn4lSfqzaqBlWvHlWPqIdVVD2kHlQPqPvVfepetUHdo9aru9U6tVbdlTDfd7u6Td2qblE3q5vUanWjukFdr1bFz/fVqZVqhbpOFcRbf1q/G1MNn/WHnG/4zBr3uNiv46Vu+9ijVQWVbmrs0QrDBVABITgfFsJ5sADOheGQ77aLMQyGQh4MgcEwCAbCAOjvemLPaT/oC+0hFdqBB1Ig2dVNaTSTIBESIB7aQhs3OXarWwemy+/Ut+obdVh9rb7S7TygPlIfqg/UfvW+ek+35V31jtqhtqttaqt6Ut2pW3GHajRrudKL3dTYI38xF+ciWAQXQgRGwUiuQwEEYAScAifzI6dDGhwXY4tt25Yb8G3YYVv6z51l7Fa2bXAuS2AKd30yZzYJJkIxTIDxcBoUwTg4FQphLARhDIyGrtCFk88BH2SDF7KgM3SCTOjIj9kBMgJr5F/qT/WH+l39phv8q/pF/ax+UkfVj7qrP6jv1Rfqc/WZOqQ+VZ+oj3V3X1WvqJfVS+pF9YJ6Xj2nnlW71TOqUT2hO/64ekxtVpvUmtjdt/7iGlfDJXCOm6p/CpnzYR6X5Ww4C+bCHDgTzoDZUA6zYCbMgOlQBqUwDU6HqeBACfQBP5f6JOgNudALToQToCccDz24N92hG7SCOLDBApPfSCOwXjarY+pLXdi31Vtqn3pTvaFeV3vVHvWaLvQWtczu4Vtq+31XmH7f5YW1zmXRWqemsNq5NFrtJFbnVxdV24nVncWS6mj1/urWlxQudpZEFztxi9MWWwkXFy5yLoouchIXmUkXFkacksihyNGInRYpicyNVEVWR/ZpoM2GyObI7ojd2Lwr0D6Slx+sjayKWGn63DIipic23CWSmBKsKgw7ldGwExceGLbyj4bNg2HT6hs2J4Znhy3N2hTufkIwNntQOKNTsF24bzgQti8oDDkV0ZBTHAqFakJrQztDrWpCdSGrXu+sQCg+OXh+4ULnwELT2GY1G+3ULqvZtRNCW61jhmk0WccCzeYCXYBzdSHO8c9z5kfnOWf75zpnRec6c/xnOmf4Zzvl/pnOrOhMZ4a/zJkeLXNK/dOc0zV/qr/EcaIlzhT/JGdydJJT7J/gTND4eH+Rc1q0yBnnL3ROjRY6EwvNsf6gM8Ye7NPfIEa2viuya7OPZMclzvZWeK0K70HvEa9dkXUky6rpbHo61XSq62R79GLxkunLrMtcm1mf2crT8sZOqmhf296qSK1NtfqmBlL3ph5MjTNS16VanjrPWk+9xy72lHuaPM2euHqPWZ+yM2VPil2cUp4SSrE9KbFtu10gxd8v6En2JQfG9km2h/dJHpFcnGzXJZuBZH//YCC5e8/giKTipPIke22SGUg6/sRgU0JzghVI0AdN8c3xVnO8adhmjmkaZjtht9W92Wym+4L2dg0ZRivDNFcZJblFjW2aJxc1tJ04vcFc3tBjSuw1MKmsofXyBsMpmz5to2muLN1oWqNKGtKKJpWxvWzFCsM7sqjBO2Waa69b5x1ZWtRQG3sfCLS8b469NzSlNHdWZaSysiq3MlcvalalRqoi+m7B1KuMVMU+qao0NCX3H75iMypjRFomVUbKI1pDH2i4smU4tjWrZco/rfGvfv3jT/JvfJn/y4P/f38ZepBjT3Xlfz+IsYdBz2llx/JZ/wFgO+eZAAAAeJytlFlsVFUcxn//md4WCtSCQMUFFJeEGBWIYPAFQ0x48YEHnwnxwRfUEBODgkoMQTTiWiiLWAoieylFRdCKtVJRW+rGoggKyFZpocgiDPRev3PudGbawgthbube8y3/k8733R4oKIewlOznFV2LWcunfM7X/MCvnLFCJjGLr/ibf/iXS4YV2AC71YZx3T7hzOBp+iRryacEolTUHK6OmiEoymFKhUry7skyUb+otSsXloabw6b8XhT72eJEg9g2a41SibEOR6MdTsx2az/RVlAeVoVLOv05U3iW53ieF5jGdF7iZWYwk1eZzWu8rixmaP0Gc3iTt3ibd3iX9yhlLvMoYz4LWMgi3leOH1DOkrTmcLmuMq86ZRkrWM06PT9kOR+xklXCa5T+OtaLi5kYV4qpYKnYFWKdy3FVujZQzUY+5hN1FuMOtJlaNvGZnlvU5hfU8CVb1WOtmq3znGM68NWd8f0btlHPt2znO77Xm9FAIzto4sdrUuozjEM/8TO/6F3byS52s4ff+YM/+YsDHNJb19JN/02OvfLsT7sOynWEZjlb5Yx9sWefV4/7HXZq9gCHrQfnLMElIq1ce2W+oYW+R9eea2e5z9n1USXsGlqZ6aZSGVeqT4fcelG6jfXyVivBjvyunFpTup047xp5XBZO2ZHOYnu6CbfP1sxsg9c2+rm6zK7ZRONfuCsnnX05GR7hqE8mTi9Ws+k5x2F5XMpuj87ZHtJsnL6bdXzujNP2CjfrdGhR0u55wjdxgmOZ9bG03spJTnHO39s4rfPkDGeFz4tpE+rOdmX+03WBi6TU4GXac1B7F6WdUB1jZglLEmZXWdZ/8yywfJ1pPaynFVpv62NFdoMVi+ms9Moofbspva+g9fRMP7vR+uu8LLGb7Ga7RefmbTbYhtgdNjRHG5RRbpdyp91ld6e1gX5yUGZ2iBwlOd5hNtym6n6v3W8PaD3CHrRR9pCNEXOf8Ejhh6UN989xTOAJniIVHE80av/+OlWqr/XUDtYwgIroQjQuXNZek9xkj1ujEikiUlPP2CNUBBOZHEyJztvQ6HQwPmrJS0UtNiI6S2GyIvmk/g8O5j3Gizwa9P0fihbt0AAAAAAAACwALAAsACwAdAC8APIBGAE0AdYCdANSBGQFKgXYBnoHDAd2CA4IpAlmChAKSArICxYL2gyMDP4Neg4qDuYPRA+uEBAQehFmEfwSmBNkE+4U9BVyFcYWRhaIF0oX0BhCGOQZYho0GsobRhuyHGYc9B1iHYgeJnicxXsJdBzVme69tfRSVb3v+77vi1pqrSVZltXarcW7vIKxMYkxNhgMhgzBJjCQEDYnIUAGQhJCFix5aTCBDHjI5AS/Mwd8zEsIeUmGcyYwUR7ZHgebbr17q7qllnEShiQzCFfdul196/+/f/9vNSBALwDEZfQUIIEUJI9CkGqfkVK9c9mjEvqn7TMkgYbgKImnaTw9I5Us/6B9BuL5nMajCXg0nl7CXfXDL1R30FPnn+qlzgAAINhVfZSw0/cAH/C+AKzwPJpUw/eBBJDEvlmDiz0EulIwVTk3d24unYESwqDXmox6JfR5k0QoSTblO4nmTjKXdRKEaXLV6nGJMRG2h20qsjDWZLUVRpsIzhxx+5Nmkl7zUnXLT96obntZbVLLKCkr3fHa62/sufqN18/upGVSUqo0Inq2IHq0iB4P8D+DWN47ozXQpxBZKuCCF2YNVkYkCJGjFijSKwmpkkTUwHxzQduUJ0LBTgKTYzJqCa21abRAqmxheyRhlEysXjVFk5ZEwBW2suSOqwjrnjdef20HIoSSIZJOw0ff+Al89CWFUYmIkdGvVicQPabqT+HXoAfYgOGoGpSJz85qWZMdqM+eQUS8nM4EEAEqKFBANOswHPjh8Gsyrd1wWKoxe60OvxrSB9TefMCX9ajK4e7WZsf3GaWMphk1C/WPeKNGqdQYRc9qg58jWohpxKtmBkjZZ9BjKZCag6kzmFGJz+MNNuULOQ8Gu8Vorm62GI0W+BVOw9HwvdZkqtiSZMxhIMj14PzvEd1hwAL5jJwcAl1nMK0Sn7hE1gi/1j05yXdPTfD3TPNdazbyXfh7BCjOv02eowNAB2LgX45CYtnUmmdAYv77J1TEMEhA/bPEAwDMn+UZfA2gigTuU2iKAbb5X82ycNhWnv/VMVYFh2xlOMkrVRMBM5pFBzQVKMOpGZ5eBcxd1rlYrAv9QyCe3bRxOoZEOR2z8Vr0CLkbyhlI6CGBl8frfZx10aLoP7TqWqwiWDp12dD5JOXzKpEmO9F1J0Wey+45/ulD39keye05fuuh724PV99jDK54i7dtOKE1pgbyofaEUycl7nro/NMb1z/13pe/dEE4P7nh7h39MW3xmm/uufP4rpglO3TZzQL29wNAPk2bQBLMigjyCnkEysNQFoJQC9Pl+e/zcoQfn4YkiJSJe2edZlZTnv/ZcTSp0WnL8CAv941HVGrI0uoyjM3wkkmBOcRVtquCVC925nSugkS6aToGpiHi1MabI2EYQY9peBJ+wEdYDmnXpmlxmenptVijkaqJgLVBjVQJk1Cw84Bo6AYNPpJPS1ilvFKQKVkJjUa//TeTQyMhZEoOGmmVOeQKpsyy1+Qqlr7MHjIxjClkd4TMLDmwl6U10aDZZVTKjlE0CUkpJ7/wGmsOCditQdg9h/SvE6pr2CmpOKRiUN4K5UXI8uWaLvLQWCZ+cyIXQH+g+CzxG8DOvyOqJYv0ho2W4c4Tmpai2128lA7t5BU5oyQ5oS4KKlQsw7ULsMSyXdpiEWmRppjCA5gSVPRMsZhKqQVNBUi7IAZdt4Q4RJSK/Bs+GAtm43TtYUsF0wU7kfNNEliTa9otEYQj+CPsIhCMjJqpmI1uvVyituh/vmw8qTFEOqNt65cnFXKFjCYljGXZ1uv4y49cljEP3XnNEVhlNJxklyNiZWWmuM+TCvgM7/bt3TTm97TFLc6Ai7OnvCaXSWMO+My59Qf7uw7c/dSehzhLRJDdFPIdJ5Ds1sAuUXYnZSsg0wfZdXWhrYOZMvFDXjEyERzhgyMjQZ5U2p4l3kYu5VfH8A1KhJQoRCWCUrn8FFwF2oAcbjyhaUN/xkIN0UId0QK2/dJEvAwpXuN206UJI3YMRgFcYxmuanQM2mJqrqgW8BVEqa6J9mxsTmtCMymNtrgoYBuvqNGP6FaRf3daFqVd91kSwVcLborAwo7BBbOszVxK/FKDkyRPDNxW/kTPvrWtWrmUVKuZzND27ubJNodv+c4VVyu0HE2zGm5P67oOtzHWm8xvKOU4GSejCIlc37nxxv6Nn9+Wc7auLvZeNRiGN255cHuTzu5U620RRzpgc9msqWWRRH/OLjWGXI6AXmbLroh52mIWV8At1QedFo9RrQv6LfGJG4bato+1KElZ09jlQnzpQTryAtKRNOgB5+rxpXf++yexzHuhA+nH52eBUgnK8z9vCDJtZeKGkwFeQJIvw/Cs2y1txD3Ky6MTZuFjs+DhpDWgUTDASONAcxqLuoigzgrB5jh6nIpE/uRdnkFSWlybl+PF1RdJ9s89QXxETBQgFh4KMEmqHnCw9JrFjKk2RdE10YkxqEC+oE6MHpw9EJvqyxgZUq6Qc/Gusczkvn4vkbx18op71kVar/nm1etu39IdUFUvmNP96VRvwqiL9KRaryBeHH3ysXs/wXNavSHs94SNUqVW2b798IAjVth+74Ytj+/viY7s/swj2V33rPJ72sczTSubrD4sC9P8eeolWg+8IAjerMvCX2PZhy3RIYRXTuEzK4ARKo1BlvF5GUD5oMYXDGBQnDwLOKglOS7k8Pt8TkZhBD6vWap1jGunUL5q7urqQrbVoskh28LGlrPOZaEltXHafCabO3j76dPQfBqFIWGYzoBYzLaUhuN48Fc8K52JxdYGnLCWspKeWrpYaIZiODNJfaSHOspJjC2ZXNHJUaur1nFK4WiKJfN6CQc/J1H7OnNtfSGN5EV4Eu7e6o8aaFKuVkCqotSxlMQU9VE3aQwsSbJG3cuVnyA9J8HdAFAFWgmcKI9qAQ/X0XUR9x23sgYDi1LJL8/Egzmk1zOsNVSG5GwmI/XXFc5fhgFerl6ZFxQuX4YRpHCTS1S6iFQ6m5oTQgXyHbajH2+VdEZUWJxcamrZpeBFnCQUXI4G669ucUgVgsumr75lpPoNTyLhgcv3P7Gn3ZxcFmueXh6ufsucLnUcuq+ItHOZs3Vd/5efbx5sdsHbll+9qjOsC8WpHfFQeOVNk6mJ3ryayY5eCf9PqDNirD5tS3VV3k+sSFur95gSy8QcdnT+PymW9oEiuEPEb8YOYs8TPwBKYIZbUIkQrPEZLMPNM7oJqgzXnWxKC8ymy3DrDC8XbLQSOzvXhQ8420RKZnvuY34fYYWCsES0ZG0nROojMdTSy4aUUrB6ikXh1di1/tre2849OLbmkZ8eKlw21WtjJCTFKOWqZOnyvuHrp+Kp1QeG+7aXUgoGed/TFp9Fa/J7jOOP/+GxJyD4zjqtI2jT2oN2Z9TK+WK+rmu/tuOar1/V5Am7ZeYYtmGsZy8gPdMCF9gtovQC0BEPIQCtxL1ADsw1HpHTSvJy5UqbuZ5Fo2i0qAsYGqxFz3zUL4h6QyzRG7pBS16Y/s77T1V/JOjI0Ld++8Sq6ruxTQ9cf+iOXfdvyxBfmql8ZVBUh5WPvvP4hkf2dX9wT8uebwhyRzyRdyGe4uA7IkdYtYl7eZVc59a5EU9WswKRZH0WRrAITyjgcDAosdS13iIQrlgZEghHRpFcTLBErY9hfnGGlRKjge3E32BFUTmIDxmSD5XeS4eIOUYlr1yHsSEOy5UMKgWV8moW3i5X4bFKXr0BvorHV+CUWYSJsYScdnRVPc3iVDpoYqr3CUkzwmv+PLkN4RUCJ2t4SXVl4n7eqHAAp0MaVsFhqZlTwCEpDmrSZ+FqoJt/9wQa63QWCQq0s+gOicCsEg5JynD9Md670iI4VKsY3RB/uFhLndYUBcB4zd9u2QVNasSpXrTVkUQMoiKjuhbeLVeytDDey7myoWDOqUAobsGz1GPOiJmrfhUVwU4nqvGrTlbNSiToQD0QD7EWXGOX5t+hHqL9oAv8WMRq1m5XmZF2zYCQ6hTxRZDHBoApN+P0TiGc353l8BmGjnm9xVTnKZgCNGBqysEgxnh5cUIvKIe+DDfN8Kl6boC9hkbMDgQTOz2HLupm9nd5Sh3NJS6p0KwRKn/kmgSMNWKKspCPIEhQ0qFo3XxozcYvXNXaduUD6+KrAn/U6rFiwuNqi44xdG++YmfTQ3/85rrNT7//xck7r+i1cdRyR9TC+KP+7v1fv3z3k9e06vUwnijYgyaWNbr0lYozYbXrmbVP/v5Lj1aObjR5gvacqK/ULSjvSIEz9biYErUlUNMaf+3M1s5M7YyzwmPo7OPKxH0zJj+LTigpMEXH/QIu/lNwG+ABh1IXPb5WcS6O4FDCsCRFEHKDGAYOps7OZdVikoD/s6Ek72MuVTd/QWkb9VcMBwY0Vx9Styic2WAo51BU7ZxT1GGFMxcMZZ0cfEvhyIWCWafCj6o3iQQdCLbyx/qYerk+qgbgG/WxiCl8AGFqAJE6poC4/zjPqMdFWmHKiv37bP16Cb11yuADijo9riymZ5GKxSeDms+hOtHzcmBLPeqkiftRTGWI+xARXuLl2XjcIC8Tr/BKHhhC4x5GbRtXLwJXxOBbsTnMqStZTBrPXuquRTphCF4C1loWZ9BLpHLohFQn6ypEuosWafWGD2F7o1TvzobCeRentVQfhp82ykOshpUwaNXtlS8tOIuXWJFTtvJjIqjQMBSaZTT+UDVVORmxgYUYNYn4t4JSHW8DcrkskKvGDYICGcpwuiFMwNQZgck/9fnS8LGgNNj1TaKQwFS+60nUGFHAI2iC/qQzYuNQcDhSF8yF/8uiSlyQjWQPigft4PVaD4VVpNOmVIpJms3WMnHZMX+G4xg0OAn8hZUWjjWfggmk7Mn5d4+pfcRQBhdFbjwyqfFRIR5NyHMlJa7wStfUggXghBtbDsq0s1nRnjQ5NT5oih2pXE6TQ0wf/5s+ZInm+mq91xD0NcYMVCCjzB7mkHYIQ4NkD4tKV3/azhHVOyitK+31pl1asvogwTpTaN7BFhLfSvak3Rw0U9CrcEVaAkdtIUuDATguvIWUgaSxitgv/PvC/D/kCipfMfpBhYTRVr9Kib4FFmykTGtBR70PeCKkYpIqlb5M5GecySw6HQPOlvEIRkKrChJDkXDSy6nxiGMlqjI8eBLFfRwzk2i8oCyCYaDEvxhDTr+46MVSGhHumb9+yRrGQsMhBJHp+ZzQ8GGAdU7SlEvCRYWlympbQHe1LxcLW6rP21tNBEWxtqTfl7QyzeG7g/mIX/eBMRYOaiFJcvak35u0MBtMyOUqA11ZYrpwsK3/c0OV9Yxoiwz1j6mUwtkUqoZiExNj4b4vLCc2MWqOpjnBDxFgbP5t2iz0q0OL+a+eeBF96ERHBlgWc7gNyPgmfGaxssTGR6+6RP77Eb/QEGcbOstLygDaPPbI21848osHB9H5i/f94shw9dfu4U9t3nzrmMc99Kkt+Ew8+E/Vo9Ojj51/6uELT28ceey9E9u/vr+7dODx9Vc+eX1X/01P4Bwf6RGJ7NkOIuDmWobnl5xCjlYDHMQ/83KgWWiEx2YlEs5XXiigYewYb1jJ1ZOuWi/k7Fwt7/0vfa/GcgxenJ1RjYk/2Xvr9z51VS2OcJkwzCQn9u2fjFfn0n3Dkauv65oq2MlDn/jG3vbqtgUbuiuVkpo6N92ytXdNlK2WvB1TNb6HEd8F0AseEvk+pk5qIswp4mUk32bioZlIlwZnAvakuk66GtW8szxv6qhPdKCy9wTvWWmqe5M6O0IBfXZOSJ2KuID+WIs0eKMQmSQ/BI7R5CRr9bQLxSeYD4aSsI7VsMzZmo1mHRy1zxDO8NHxOmyoaBrN9dhGDq5OeviN7Y5cIqz7hIqpfru1R59LXHe4ZbLF7mVVDLIuDQc9maGctapbQPNIPESRbGH1/uHuXZOdOmW4WErOB33kZfwaLS2pft6W6cX+qWv+bVSKBEAJPFOPYd3EkeP+rD/L2XB/AnBJ7LObAQMTJzTN6M/YXkekvQwTPNdtoyMTCw3ONQ0WIjSyG/qsZ+eEemtOKL+Tf5tVF21wSbOtKY87p8L1xeW5hLxr6NbvbFu2d02blaVQiaXMje0upYea7OnhrTu2DqeXX/vo2uSGsU69lCZIqYJl030bmmN8zJAavWzHZSNpeNv2L12RN7q81kzSFbWynrDHFO0MxrsysXTH1L6V03dPJ5Vmp15p8lkdYStn99gMgbwjJn6+V4gLHKrX3kF67QUTNWsGElSvzZo1Em0dCK1QLjkWLTALU6fxVo3t6J+7abGWWsxF6x5KyCXeEcrL53AmgVOj6nOMWH4y5D244KQec0Qs3IW5BVXScZaIwxm1sLh8QrTfNf829W2U98TAlEj7c8BN3IPYMqJMnGOC4+rxhYbBhgbBddUdLM/+6XsafepiDlTzpg1B5tt9n/nXWw+8eHiFUAGihCi4YltH59beAIfZyqBM75f7n7u1t+OmZ24iF6yiQg3vGQgES7t6SbYhlUU8GZGfeQLx5AcjtT4TsKA0afiY38JZTLiSZnmFxTVuprW15FmLsldLyizkr+o30QExdvKiG7BjEHITCgdQoVlUy0jQCEqkpJpW+zuzoWLYopFT1Vs42tJeSObtLA1bIWyiOEchlczppFwS9xYhJeM0CupG3HykGL3qAyv5C42BE7qPmAc14sGMeIiCobotm4gHZhScG3cYozaA2WB4LjBuk2jHJQtcpKyV4pviXrrt5EUfYnEs6tEiEzonNOU6YbOuzgrxBTEzdXHVR3SsqbM52exWSe8xRAyELqz7LK1y5mPFLhOnhf9ZLdaxhz8g/jkQQdywWmX1xeT2lsL2JGxX6ziKNkT9OLavQP7pOvJ1VGPwMFSTjNyULxPrj4FQCLSWieW8WkOa4O9N0FTm8vCDPMwLm6u4K5HPJ7ujZWjmbT/3QvKg924vwXvHvJu9pMrr8hIc5fVSDrzLoOSQKjrMajjsOJ8cwC6fl6OLjrd4bpgC5lRDk1/YVd40LRTbsek9c9N78L6CsKeAVYBX/c8SI8Yi3OiGHXBxx6ENXrRVRAlmJBV9ohG3B8jr9LFoIqJpvnvViv2r0x03HNu/WhPqTndtG8qphRrJ3rdxd9vOBzbH39vcsapgWdHVtDbpUqqlUrVyRVtPoHRV/8jeQX8h2hXV2712pTVocvkdPqcuMnV4w0+0/pynhS/kRXvrn3+HdJPnQFM9qs/YQeh5Yp/Q13UB10L/31+GrhndAPUs7AcZBCXLwuFMXHAd8TLsm+Hlw7X+bGyhwXs6W2vw/lULLen01iOJRAwkksY2L2KElppbB1Yntz96VfOy67+6JTy8rMkop0m9WhPM92e3XmHNDeXygy1BhZyTUk9bfWaVyWNV8weP7Tv80qc6UbAwqsw+S2sKwXbk3v5PDgRcQRdji4rvYwwiG3iF/gQIgiK4r4YWayueIjaij1PENTyj8/SxxZCNUkbrYQEpWomXmwcW2v6lY7xymB6qBQncsTQVRYcsqq38Yy7RkPs06lsOJT0LzppMwsacuJl8hTFHnO6whV1+ZMP2u9eGc1vv3TR4oB2XZwFUnp0vbCtkVsQM2khv3prJFdximsOo2G0D46OHZ7ftf/5wf0cb/Pd6iVDJ9/Znxi9varlyIqvyNodF3AYQbseR74iBPCRrnT6dzhMvE8tmYnmqjJHzkHFdnLDFX6KwnZoUcBhQaooYGqM2U8RXqKcpVLzYU2WxUYfPvBvdk3orOGD+f0CpVhIaUik3c3BYbkY3yN/n7TUtiuF3WuZqZjq9B788sHEaZ5tv1tp/vPy/9dFCXJX4PA16a1iq3YQhVAhiOUnJ4xF/5Ze2tmm+57JSWiXnZCRByRSt6/b1XDd7fVvndU/uvPrR7ek/kOs3pVakLAQ8n4wXp7u9OpNOqvVYjC6jSmk2adoPPHtw/wuH+nqu/cpG95U3+DsmUoLtW+bPE0fo60E72FOTilENULK5aTYdDTBl6JgtrLAGy4sbM64TfLrfPaTur6fd2S5k5qdzldO500K9xny071zUF3XAWteoMWGv9UjbYL0vShyhZIxEqrF4TbaQlXscp0h63eOcPevzZxzs1TodjaZ2+4evWxnqCyvlFPU7h08nlcqkmkBbbJwxhR3NqUqSEdv6DPFqqtkRNjGD6+9Yn1SoFJaQsFdoq95HPka+BjrBCNgEQa1nM6pKS8kW30Bu4KUB0jUAB37xQw4ikXM/nIDOCWiegBO/PWOAJgMEBrWBUBkMm1vI99v7o+54z3M9BOiBPWdaBlTroZpc/wrvHq2/8dM1Nz2NgrsQNnAEQZfT54QTMmmsm1OND2YH4F9+9uKj23te6SGoHqj6c4/fuEjAkueLBGBVjaFKSczcgyElGhlR6UQaGsrtZvxKUqE5Cev+BhVaqLRaiGh4xzKYgkqydkU+ZlTvNOryW+6YjI0YOF0u+eOh/Stjrfu+e+01/3RFSuNJu2KpQswXbd76mfHosAfaNIbq98ZKgZaAdmxFsCWga+vvmrW6dJLLNxRH0npyczpp7vCM3DARMygVfqMjQMjIwLKN7T3Xrsr6+bVNnvbmrMk0mmrbEvJtLY3cOJVg5PHq+/1jlljR1TtqjjZXViXSBK3zuZ3qbN4UTImx8WZUG7xKXw2yYFc9j2OJTTPZqL5MbJ5FiXhjjTrMy/nEgL/PMiR65lpZKta1uBH0kW5f2gkWIpz0Eo1WMfkzkK9y9ow/kLFzOn8xmN7axAmO28HVz923l9YfHPZ660oPK90DTY6+ZZXv1mdoX913V3V8V/uOf9wm+uxd8+fh3fQIMAAPWFbv5RiJF4AdGIjNgAEueONx3qIuieSfs84tdm0+9NEl+9u6xjcgD1xMua5zcqqtY2qyfYF28gCKO4hSxEV6qLWlNNRWrMnoFJJRfrH3nUH0eQGHjkbgI07MJhJGpkycxL1vo5elwyV7n2YBdVTENva+3xKqokvd1dhb+Ai9b/IU68iGIzmPVlp9/WLmoEym92SCgZyLU6mqF2CSYz2oFKQp/CbDuWr4w8L54LdwG6cVZlmVV1f939WE3lHTUXgA8W8AnTVfpVIYIMqpWAYqAGQpVGxsxlsPfSIv4taD+EambbY+e+kNiA8Jxfthwmo0SGQovo+BJ2s1dJ8ORxGnM4uA3zQz1hk6haSRRYXRov7PDA40vhsxjMTTPdDZl2gpJYYsjcAvNgWLZ/EbFvg1CaRkf81af8HK/oTZOeo1V03SEhlnTweCaQer8TUFEhsKCCa/H8Gk8Rb8yQ0LxshYIy531MQM3DfWvKY3qwkPDw6G1h4YdC/ASWgSF5nlh2fIm+qjK8bGTLH2QKwzpGu/4s7hBl+FZJAFt9RkENVh0J2CywJONd7TRJm24IO4ug9ikQ+KWvylBZC0AkS1rmQd6P/CFz+S/6oD+af91wJkX5z4C/5rCSwIji3Id/XPv01RCIuL+tDXCn3oa5f2oa28XDWw0Fa2z/D08J/vQ/+5L3yEPjRFtR8o37j/6X0tHQdO3nj903tbqhVDdqKrZbJgM2YmO4uTBSt8+5rnPjPQc3P5umu+d/tA983lf+jZPZ6MjO5egc6JyMhuxOPN1QcogHiMgg5wf60W8RQYLHIDiBGHeDkwMIUmD0Wn65aRLsNBXhEcsJXUowsvvA40MNAllhK1ljSW/omPuUQDEKFLiZ9shEaqcUIBGoDKj42h7o5294IeWCIuZ8TChAZHJlJb71wdrp7XRJZlLagWcTZtzmeWxw1wbv8Lh/tVrqSrumFhp+JndaXYGe6I6IcPz+wv7hzPqLyFcPUny0rZldvrNkM8K/Q0PlmzmaAKeUueA1YV42JSDKkgmdqLpSgdnuAZPjYQVBncJcOQ2JYRlH4TridO16yF+Yu3X5T8XtI8MD4S4lmU6zMyvcWpNUQTyEjsS43D29nSYlc43WaWpghy0J+0MjjZ9bfHK2c/bB67s91BFSmVM5xBfPfibeJ3iPcS+I/FfnNyod/cy6MISiVh8q1mFEiY/9A089gHNLubCVLoEqvaYTve17IJneK3cJd4wKjG7RVghGrK+Lu6TuA9ebFVPC30ijdNx9Rz0+j/JW1o3v33fdjH6E4Tvyvu+OxEdn1/2shRMk7OxvipgrcppA90DK8c7ghkN94+GR3l4zoZRZJSTiYPFgfT3qxbHewcXTnaGYTOoX0jIZXJbEjEHT6D1OK0Kq1hqzPmtnvj/LouftdQlNMaVCqDy2Tz6qUGs0Fp9eldUbfdE+fX4t+7zP+a+Cx1FLSCz9fe4dZoFG0R4EvgqGpSJOpmmUBl1qyv36GoTyhwj8XUnynDFTO8VMQGWeYZwanlKtnTWU393ZfEx1hD9PLUpQu1peWcsV7kEp9ltb5Us33wk/3eXTo9VskrWYfo/V9khFrupWSb3m3RSCWshD4QT+lQuhccvX4c/lCs1H6AzJumkXn/QKzlqtOlklQulRr8CKsbcG+GfBnFv501W2ZDYmPGRWziVbpEKcTSllLtfRIUwpb2UMR3IJC7F6ou5Ue4+1L9lov65IXmxc7LK9iVeSJmFNLGNxwc9gisI2PWBlDg29Jc77h4G6PZjju2EwsTVVmfEPqIlfWZer+cnEV8xxf65WqPq0zcdszgkXh8ZWKaZwHvCZc8rLXEDi32y63mNxv75RfdUDMX6cKG/mJAM+lMtWYzQc5Ckqaqf6A1oWWFpmVBDV39g0QKWXsmEMH7aD+SSP6VVNhTwUDKypCP0kqNUfnBj3GnnOYMajKkdysliA+Klmu4yh6Lhfgcp0FJMKNCfPnmz9OvIb6Wgwdrum93aJPxuDpaJpbxrEPdolRTZGurur1MxHgFT6q7S7mSOs2q+lvL8/82i85xdOaVeNCqJk2BkmlIPlR/LzkWw9sg9W0DS0pbRDI1q88KF8WiVuwg4yUv8eXa5ohEStbgIUOLwyS8BFINQ/o1iew3tNrTkcl0+tTUgwRxJ6Xyd2ayHejq13IaKUYgnLWz5FGC+BqpsKYCgaSNJWdI4puEEAFSNob8Cut2LiJJOOXyyi8XcXV4WFRNUBSDYeU4DCsGWcVUrmJrV5RcJeaNbqQ/dyGcU+BQfQ/JS9wJzMBPRHl50oz+gInlysQWXnjtnDSyKeDzsSixP84rAc9GSj5W4yhpFhPBBv3CwJrVb+I2mIBwfavQdunvYZsy1tIGduGHfOTCZodtccOGvE0G7a3pRLNLRX31CUrpyEfjeTOUv/eWHFqLmXiTU0k/8gjJWROheJMJsj/LI+WjSbmCgR3VlxiFnKSVRg08Cb+stSglpETBVM/BKP7ZBaW06Ku7BNuqPkAeQ9j4wbbaOyNQLlcCK4qPPcf8VsZqLhN7eRWvtLpKFkZXYgapUTBYLzYu2pVC/hbvGPLcJe9FnHtI0Ys06/DbVcF8fYMnpxPUCeqlxKevko8Nh9NmQrpfYaCrZxTmYiqWtSulr5Lfl+jizbGiTVY9bTFK1WYNjEksSjLvCxhkJGcxVZ4itlg1MpkxgF+IgfN/hK9SFPHo4u8b3X/y940UZbB8MGI1GKzkDKpBJURLcyrV3JJihJYZoAGo7iXfoJXC72GLYBiMgMnngAI+DEygFf7oWG+vLCF9Hl0SwA1/BGQAwod5HUUobLYuX5PkLnKlptQlvYuYBF2Vn735MjqcwWDB1Jv4l6WVl3HNh/NwqPFohH/izzxFlxsKFmo/wAkubqoUaj+DJS9KxiH5xgej5PKKn7jB0zaRoWEsYHLpZDLS5VQEcm7V4LCvELbSlExC0jJpqNDjm9o/4P1fjFn4vRyDzg47OldepJXnf0crL6ymei88R/yquKbTL7lBwRK0XPZw2GnwZ+wdgwqVglbaTFa7VKZRMtH+LZUvWgP4t3cBqz2A1wpU2v4/0DmrEXicpY+9asMwFIU/JU5KwXTJ0tFTKASntmgymC75IV06hZKx4FBjDMYCJ3mVPkkfqQ/S40R06lDIFVf6dDhXuhcI+cTQhWHEg+ceN7x67vPIl+eAkQk9DwhN5nko3clpglsp43NVxz3uePbc5503z4E8354H3JvI85CxeWHxu9ZMWJFTU7Gn1R6zxOn+AYsu1pNVXlf7toqXrpa4paDkJEcuP9uiPNW5YKOqhuP5bOUoiLBMSXRmyv/9efGmzKTNlVb1lic975rjxrVlEdlpEmXRH71JTWfxPLaJVcE1M+7UfctBzm6mrp/LHOyK9lC5JkrVw1Vf/AARtlINAHicfcNJbkEBAADQ979NkzZBqJWlmRhjCksxtdQQs42Fpcs5ISfoS57Q/wbvgVDEpy9RMXEJSd9S0jKycvIKikrKKqpq6hqaWto6unr6hkbGJqZm5n78WvqzsraxtbN3cHRydnH1DMKP5e1xX9yr9ReTQQ8LeJxjYGRgYOABYjEgZmJgBEIrIGYB8xgABhwAaQAAAAEAAAAA2yC/7gAAAAC763zMAAAAAOKTd1g=')format("woff");}.ff2{font-family:ff2;line-height:0.873535;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff3;src:url('data:application/font-woff;base64,d09GRgABAAAAAAQ8AA4AAAAABnQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEIAAAABwAAAAcYCBgcEdERUYAAAQEAAAAGwAAAB4AJwALT1MvMgAAAbQAAAA+AAAAVmClZ69jbWFwAAACCAAAAD8AAAFCAA8Gy2N2dCAAAAJIAAAABAAAAAQARAURZ2FzcAAAA/wAAAAIAAAACP//AANnbHlmAAACWAAAAHoAAACEJzg3oGhlYWQAAAFEAAAANQAAADbpderTaGhlYQAAAXwAAAAbAAAAJApWBgZobXR4AAAB9AAAABQAAAAUDZYBRGxvY2EAAAJMAAAADAAAAAwAWACabWF4cAAAAZgAAAAaAAAAIAAIADduYW1lAAAC1AAAAP8AAAJJrH+P23Bvc3QAAAPUAAAAJgAAADWc2cgFeJxjYGRgYADiZ7zePvH8Nl8Z5DkYQGCZ3LmzIPreg4tbGFwYGFgZWEOBXA4GJpAoABtPCaIAAAB4nGNgZGBgDWUAAjYQwcDKwMDIgApYAQxIAG0AeJxjYGRgYGBl4GBgYgABRgYE0AMRAAKzAEAAAHicY2BkYmCcwMDKwMBqzDqTgYFRDkIzX2dIYxJiYGBiYGVmgAFGBiQQkOaaAqQUGBRYQ0F8CAlRAwAyyQYYAAAC7ABEAAAAAAKqAAACAAAABgABAHicY2BgYGaAYBkGRgYQsAHyGMF8FgYFIM0ChCC+wv//EPL/Y6hKBkY2BhiTgZEJSDAxoAJGiNHDGQAAYuoG3QAARAURAAAALAAsACwALABCeJxjYGJwYWBgSmENZWBmYGfQ28jIoG+ziZ2F4a3RRjbWOzabmJmATIaNzCBhVpDwJnY2xj82mxhB4saCioKqioKKLkwK/1QYZ/zLYA39tdqF5SwD0EhGIMEKhGBzGRShKhkZWBj+KDAf+OPAyvCbQYHlAFAVAGmUHCcAAHicrY/NSsNAFIW/6Z8IxW1dZl8Tkmi76K7BFtddFFdiwDGEhASSto/ixhfyoVx4kg7uXAi9wzAf954z915gygeGLgwzQscDrnh2POSeL8cjZubO8ZipeXE8Uf5TSjO6ViboXR0PuOHJ8ZB3Xh2PpPl2PObWPDqeEJiC9e/ZMCchpaXA0nAip9Sx+MrXojdYd7GZJ2lb2OaUl6X1k7pUYSddxlGqVF52NjuWqWArZ8WhfxspLB6xJgr1rnT/1//siVgot9SN9U/Mg9rU1WFbN5n14iD0Vt4fc6oSLfylH4exTJfafd97Wnm6Xbv5zvuxt02b15UXaaaLtfsB1VNhRQB4nGNgYgCD/8YMaQzYACsQMzIwMTAzMnH4Jeam+qbqGQAAVJgEQgAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQhYwBvEYAAPKADMAAAAAAQAAAADbIL/uAAAAAKYezs0AAAAA3uDRtA==')format("woff");}.ff3{font-family:ff3;line-height:0.666504;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff4;src:url('data:application/font-woff;base64,d09GRgABAAAAAB6QAA4AAAAAKhAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAedAAAABwAAAAcY9JLIEdERUYAAB5YAAAAHAAAAB4AJwBYT1MvMgAAAbwAAABGAAAAVmKxBvZjbWFwAAADDAAAANsAAAGSQedNImN2dCAAAAPoAAAABAAAAAQARAURZ2FzcAAAHlAAAAAIAAAACP//AANnbHlmAAAElAAAGB0AACGYJ2xZU2hlYWQAAAFEAAAANQAAADbuqNObaGhlYQAAAXwAAAAgAAAAJAwsBWxobXR4AAACBAAAAQYAAAFITvQTRmxvY2EAAAPsAAAApgAAAKZV601ubWF4cAAAAZwAAAAfAAAAIABcALRuYW1lAAActAAAAPcAAAINAkhv0XBvc3QAAB2sAAAApAAAANmfhUPReJxjYGRgYADijM+uJvH8Nl8Z5DkYQGCZnPBNEP1ocnnEvx3/ODh4WFOBXA4GJpAoACxiCtUAAAB4nGNgZGBgTf3HwcDAwfBvx39BDh4GoAgKCAIAbiwEp3icY2BkYGAIYvBjYGYwY2BhAPFgQI+BiYERABaAAREAeJxjYGQ2YpzAwMrAwGrMOpOBgVEOQjNfZ0hjEmJgYGJgZWYAgwagIAMSCEhzTQFSCgqyrKn/OID6Uxl/APmMIDkAdsYJCQAAeJwVj01KA0EQhV93V3c8wIigIAERfwYhi5lFBnSUCCEw4kIYQXe6Sm9cmf2sPIAwgkcYL+A2d0jfYpbqMu1Lw8erKqpeV+ke1+DTHaGqHk+qj7+MX3SDKfVdUrwJUAvUIfWVLMiEPJJn8kkeyD37Pzaz1kNJj5FdYu4SnFrgSjzGLmXucakDch3W365EIQHFwOPYAQeuxVwaTGxAJjUWtkXGmRPmbtACjHfoDZvgwixxy912jceMOjMNbnSKfdYLKTHiHkONODQd9njXNv/NWB9zz4r9hkx1j5K33+kaOfMz08U1/Y0J9O3iH71zSdRq4y2IP1uEvkf0rMi5g4L+QvUPgxM9YQAAeJxjYGBgZoBgGQZGBhDoAfIYwXwWhgIgLcEgABThYFBg0GSwZghgiGKoYqhheK0goiCpIPv/P1CFAoMGgw6DI0MQQyJYRhgoI/P////H/+/8v/X/6v8r/8/9P/s//oHFA5MHRlBbsAJGNga4NCMTkGBCVwBxKgiwsDIwsLFzcHJx8/Dy8QsICgmLiIIlxMQlJKWkZWTl5BUUlZRVVBnU1DU0tbR1dPUgGvUNDI2MTUzNzC0sraxtbO3sHRydnF1c3dw9GDyxOcoLt3uJAd4+fv4MvsSrBwAr6Cp5AABEBREAAAAsACwALAAsAEgAZACGAJQAqgC4AOQBCgFIAaAB0AIGAkwCdgK+AwIDKANaA5QD4gQeBGAEogTeBSYFeAWiBdwGLgZgBqYG3gcSB1IHpAfqCBgIXAiOCMgJHglaCYAJygoGCjIKdgqmCuALTAuSC8gMBgxODHQM3A0mDUwNlA3UDhAOVA5+DrwO6A8eD2QPnA/AD84P2g/oD/YQGBBUEJAQphDMAAB4nH1aCVxTV9Z/970sKLKEkIQtISGEAAmPQBLClgXCvriwKYKyKCIoLqiIFa0WV6yIxbrWpW7jvlCtoq1b66jTxXamnXb8pp9ttbW1ddpOW50KuXznvQSElvnk98P37kvuOed/z/mf5UGQRBpBkFO5xQRF8An6NCKik7v4HOJR7Gke95/JXRQJl8RpilnmMstdfB7qTe5CzLpeoBCoFAJFGinHoWgrns4tfno0jfMeQRCIqMYS9Cu3lHCHGyUh8EZ6Hiny9kG/puMuZE/fffQGfGA3KUa/oU0ncWgPvoWZj/b9CstrnN+j4nwEBlKtZ77tvv7G3kMZyI67sKQD/YpMP6D/7cYzMd/xEFcx8mbj51A78TohIgih0YKMBmUIn6cMCTMa4vSxYpEvb3Z9U6Sbj5dHVHIinVm6Az8XG7xjdCqXa9TQya0Tnr8Ce2SiAjIWfQtYEEKFSJGJvsMi9O0W1p7OvruoHvYHvUz9W8L2nVZtlNWmjbLkaq3MZQrz2dV9d6kjXCuzD9IjJRWzyFGyiGt9uocgiRJ4dgqeuRMSkOLto4/1EXiTyhBS6C1mr8OUIbySR1euPPr+6pVHB9e1vDR/3eLFL5IbUAJaiFcDTO/glWgRMuGqL5AHmof2fH4XxCAVnONPsK+EkSnwlaEkJFIY9bEAhcBAIw0yxpEqLT/WpsYWRZaGz4vK1BznWnvutKaF0nREwlry5uoEDc2oTCzo20qtgL0iCEJvjCN8jAZGKZGvxGX0AKYEX8FXGkxxzAcWNKJJ21+Z37hknCxNLCv+V/vmn2biiufJloRoHhWQYClFy5HfhqOvbiqqjBe5+1gWVWx77cK5ebfx+Bmf+/iMFMjcWZybAJ+FINsGN89gZiVKxBKAiBXGni0smuKcwofVjo8cwcGdh59eX3EpVGoQBxn0sUt3LhibXujpJQvO2qXX10+YuM7MT/UKjrvy6oHD89aSn464tfXcw+Z0aURmWUDg+as7thZ5yT2DY2ZkZs6snTuvNNPC53rIJptmn9kyqWB9OUBO2MFPPwF9/Ykg0FhhBPBBR5OerxDBIehdZ2BGAkRGY18yyVZeLA/SSjB2j8vGucpk/Uich95Kpmy9V3xzdxzZaJbStCK5/WtysWMlg0cZ4LGUKyNCmDgSKjyRUkE57SMHbH0GC/IwyEi+Rq3Dr3rXdL7y2W+fv3JCKVOESKJWLTvZUd1GniJn1chx9fKn3R/j7zYmBYSpzS3vf/PhKYKxZQrIOgm2BBNRIM2CBsSQRm+CvVGGqMPUIIcU+FKMeYxYGgH8yMuyNnfv9/dPb36/EEkezjqUECOVKZUZu3ZxTMvGLGmJXpI/fRd5MCfnl/PHMb6EpNth/+MVyfGmBH8//A1+4I//UXV51s0bS9dP3snYvR10aQJdxAQRiPQgSoHAdjhzOHKkCPFE/O1FSlJqI3l4W5JZnhzvNRJ14uKSEJmEo0VCX4+eC2fSLarmYH/qEF+VCvZRxETYcz8bI0pCB0JkaMBjTDQa8BvkO4Anb8BK5oYsWfGXx6fO/Hhs6+Kdf9+7+UEnTqqrm9e4sG7Sc8rIhRPmbNo0f/Fz5BH3N18+du32jlWXpMFdzZ3dZ7c0n0CJ+/bt2P7iSyt7b8xtLVl26fKaw4D3eNBnH+gjJTSgDWMeqAKMIPYReRPsDeP0DCsYhE6YRU51yCfmtry937Fo428B7cQYpW7erl1UHGC9RAdY7ySbc3J+PXcCoUv43nb8Fi6oTIq3T0b+yE+CIgDpGzedSDPnvgW4bRY108VJg9hNMOh6i5l2Ml0/41GEJsUapbXaHE0D3Ec6eZjdSzF0L2pYVu5kdrBqaUvoUHqmiCgru3nPgd/zNAneQXAXcisIGSMDKfgAi5iJNAtinEOPJDIkgVvm2NTuJDXPgZWjC1Nww8QJFq4GtYWh6xZRZqbju+p0etEPP6BfSi4mmK007Tllt1cNdbznnXadiU/TUo24AYWTqY5LjO+Av3A6uBOJQEJNGFy+wwTjEIq1IrnAl8cVD8QF3x8NciDy1oPPtz664fjeMN7uIzTXBtzFpPYyzvUXfLrL0rJZHeFpnrhnz9n7oeQdwdudy7oTaO2kI+SmA5WhNM8NX1mxZwRas7V+vpVybMZ/vTo9bv/+Q7uZWKnre8BN4NawHKEXKMPUPIWcEBh8QhluAC4SKslQJmaZILYgrqdG4xP9Gn6I7+B1x5Dh/NYnZs0I7ShNFP7uxMc9yOfdhvsrkQOrxln+guaj2FtoyrElecVlDox8/o4P4kv4Nr5Y74BziIRzOAqYBDBXQlOoXs7xAVSooaioBE4III2QDCa6u0hShaJQwYGJO29fOOT4U/x4uxDQCEd7vXIXnbq/rfTgrV153BR3z/P4+vsvP9lXLGJxaN9bofTpbbo1P7oKST87hjwPm8F2cDrOVW4ey1h6apBgpVEhVNKkBgnYJcCF1UbgK05CsMDZqJP27AyqSfIWmKupW/Jo+aRl7W90TBnjHx0dlj3+ZcuamhltS9BBPJGOKzxCbttRrabxifaFwY4bIelTsW5uvgRf/qnYdBR0SAAdqkAHyJeIkalUMDlgkMhhsjGnxD3as6p+Kf7P0sXjYmOV6VOXeqeU0451kU40/Lh5+MTsjaGOq4VLcMj4GhU+uWeKjmaR2LZ3cijtOvencO5aJgpEwIlS5EyNcPrehELOnD24A5w94Tp7IyucOk1mV6WL/YT5S45sxJ/hpWgOSkbeXYoROp0UO7ov4/vI553pRyzS5LFy0q5Tl53s4ETb0PMoDCnR6zczxuGkD3/B9/FmvAX/rfi5SQ3Z/owfQs7mqQCHJEafYa1WiJSgpggKx6H3Qz7L2ewwe6eUKR27lE4s/Mlq/ykWEfmWj7k2lKzznWoReaWWBTu2RJfYfchDuHsoMrRi4mH8M/Lov3bU9j8HHY1AUq+CjoFMnTiseKfzkDOljJiU8nDHpnAIVx9LLVf2u+1YcQTC57GUvAx7qtm60bWlJzmI55wU9QyIbLIpZKrFN7Dl9trtB5M02qRR7nnxja/IwVg5N4+R0tt27MzR8rmjo22Jkf6BfqPkoRuv36OaGIFsnZQIWFtBpokgRiCG6MAYT9ILof6ig1lDfNEwprlURB+hnR0dqM/6fH3HY9RzommywxbYGL8Rv1AFnhjg2M14osjSSE7wByTI7WjBclMhh6aRoWj1fUff6RyaDguK3IheKH7yDJBD5XIWpH4dOW+DjnK4oYZ3BFY9WDdx3h7Zsyzced4ycl0yiPTOXFC7ZFFDFNqA5w49XUdiZ06EdtOrICOcIPh2kEEThAoNf57gs8wKkxIs5IAC1OvoEdoTy8hJKU92NOtK7ELHN9GOe77TJ+PA8Q1+oIgK7XzIqR566FRFj41zpffrfU2lPJrmFrccIke74lHZ9wX3e9AFeJjLitQ/Ewmwo374PUmRgPOoN0UycybmVU0TSq0NqINSqhrHou9LpgQGc570Fi7IsdA0PyF1MXn7lXoZ3fM/lGZiViQsGbLH9+xy5m2If14UxL+rlyAUrrhnr2OZa4j8OrQfJUIBehjX4TP4TVz9FeIi7ldoJH7626+4hzwJT1vwGnwRX4fUvQol4W58HmWhdKCEcficq8blzIWeTM7WKcMGtgn83JUS1U6iYZgIfQJxGuXoDHUGkP+Rdxv/em/jlO5vX65a0FF5oDstlFyK7w2NXh4/9dCy2UcmxEZvnnVoJ4eRD/mW+yHkey0RTxARKIxiaf3/U4PHFzNFALJwnIpwP8SdVTdtbVA9QkinOBZqnRpJrl1rvPbz5rcvFb+5/VRzT1/unqbsyA0/qnRpSF5+WIX/NlS3kSOy9jeufEMS0Xd7GYdsJ91C0+cUbDjGYfuWB9QTOIto6A8Feh8FG39happ0legsFbtqOGhkZCRbFal5/KbYYmTZsDM9/dy+g5NubS/ZOpbmabVhV59fNDcz49zJ3ZXfXLv7ssLbE53BJftqpqWnjc6oO1Sx8Wr8BJMN79zR1Tp6ckpqweiKQ7NO3DkaXczEHYPXNPBDKXgF9AyuNDgULyZQqmk+N5SvkYwtn30HDirVUZ4BAXirdeIYDg9l4AurFgb22ndPdfn9m/5LYe8IyDl9znhDTk9mmQ7KZ9MfQxtEOb1fzUlE1yeW+gYuf7jtbM8MBLEVTM4IhOCLuLSr5Z0p4oCSScB7vPSSFmw+fmhv5eK39q9DBwfYvPh/L6ybtK5zF3p/Xnkcj7GR1/c5933QA7ourhIB0IhhQBbdZ3yIvBAls2CtR5C6pJLMasiNBgdPGLMP7bJWKsvknDhpZmUqSdPyKOmM3hby0RsJ84DgyJLCj1n+Ivru8tud/MVVjgAaoUnntiBECHWmEOSw8Yz43JVReAreosPdWrU1GznKDZH/RtXxqP12xHrUWDDWrOBM7tnLkXdURFE0zYtQKdb0PuSk9FwmP3gpagWsNNx28jpEMi8UZMYzvO5kELZ6VLsjVi7LKCYhUvczOSQWSSByRhyLAJ8ahyremFbgqKwZp8r/98e59CuOn4vXzp9xD++YF1KWS6YKG5W2377ICh5biRwvnJ5B/oiL7+tpWqUJME9GkRiX5SimIeC2lPlroG893qZNpGmLf3we/isKKI3xjwyh6W2rGXwAl3rQNcyVg8JcYKChrS9ynQ1oT5HIPTVjIrpYPncC/kCUXuO4LIZIxCdq0yaQYdv15Dh0dRYdmUHTHrNfwtwzxyvUrPP9idQcSoGDyggqArkW4KPXQK6QmU84m0FwcxFSMIlET1moely2pnBmkFZL/dC7G+38W+MkP5pWcnrEa2egeLrHO3VvPn7VyaFj+r6jjlJFkEdiIYPomeZE7erE4qzIVcU7hw0stQh8mY4M8TlsQo8zUatUI3anjRk19UBKYfOt0zvE5bmbBd5p5r1Hn38xatSo8FT8rwaMU43RLfmbj2ZlZmZVjqndnm0NL85LnjotMaF17LQ6fHa+QoGuaOt2W/MtFtApAPrCL4Dv/JmKQqJ0pg1mqCAY1JOreULB4Ob0utrDmJp0UCbK6Mg5/eU33WVr6ZQUxdKi5ds2LExrVXCymjNC6CBPR7PV8vjylT4iLzeFrMWXWxqmfnTj3GV2bpUNchMBiyAWCQWDQWh//+bs+51lDOWpTcM/nvgBkSfruxTBqV6j/ANyV67e+NKfb377r7dvPZ1k99fmJ0okFy5evcNgDPty/MCeYLZS7R9HmfTOFMnjhxkZxPuZ0kWSTnQRP9YmWtQhGmnM2jh3VM7Oot0Pvt9XuCk1daV97pYdjXkvmMh/Ihszw6LUPa9tsMhoShJdk5ODiNdvPkluSkg4cf3mpaws51nng32xYJ+IYUakcAox6RnhTPvPdN5813iJinVc56xe9XqeTn5pzvTupvtHXz11hKrNfV1JypKkn/5j37R5dVfWXkPo7RyJz4SqL9nYlUGjGMCtZGoSJFIOEK6Tb416o8FCPoNTydbr6N9HwUINTk83emzb5jtpfVVTe3igURsz2lrhQ+lp7MvO54ISNqPv6ZyWNRtHV+ulYQUTy9Z8bmFtSsRu1G2wKYXIH5iYObfns3Unf0i+cQ3SXPCyGQp+jIb+8cfg0Qd5qXi8zpis8BP7hdGGkpJ3P9JFbznQVf/pOxc+tyV5e1gO7H9pX3b2xU9stnMVlddX/wnvqy/Ia5ifXV5OfldpCE6NCDMUlDeXT+Lzx6i8vN3cotZMXrG3Y5Z5NDctb8K8BWVTI8LdRmg1aa0h8R2lS07iN5c3L+zcNKeNxZLpt4XgMzGuSZQMwBrCKs6BCF8waBFSDVAQnCganfzyhJqV4cyMrVSYreH7ldrzW6JHGNJxpShLw48u3VErIo8VFRUtbvuywyKl6ciENY+nVdvKyvD5NpuCHYhSupZUOpLBmKlf/wG6uBPKoTMN4ZCkyurEevZas0aTnKzRmK+6gfvizJBMDT8wKj6wq5rzWGOxaLQWC25zXO8fvf6nw+ZN+yiZ8+yTYzc0hZUV8QdZz1oKiXjIZNe0KVmrSTZHRiVdFxVtqyxrUftFSZVZ1iqxT5TN/1RVv1QbXtPb0frisvyMOHmIraCwtYNsXpTv75SNmJ6IOgOyo9ncDq7DR86yGTwi2tlL/A5qJoiZCayaDEI5ZdtialFoal44nj7N/qGGH2vBVcFZGl5USdIBmajkg3zwZ3JV5Dh8JD8auJyMFI7+Rd7Ualc54TYuTAV+6q1N3pSiJVl9RPDrHdBHPEzV6ZSOEiF6/HBOULJ+JF1qPhDMrei5wMKqSG6nIpfbYUdnXoWaiGeBOMll5gRiEUukkt851kCLNMivhvO1gTVjHAoeKbXvKK1Z4p+3p7BiRZC7MQvXphhHCcfaUlpT+TFWvMBu9BCU2CzL7W4GO56dahw1wpjeThXZ60pKyuHfhDlLHjO8RUuTOpGgsCh5Qil+kwUlKPHlezOr0seOxUdXp0LOlSZu+vVFq5z2JFwzByHYE8va47JE9Lto+O9qBwRKqKydJdVLQkcaM/EkYZaWJyy0Za1MYgyoTo/zgP9nUUWWGcVFBQsb+4h2SzAESfxa5FZVaBs/HnexC0BLv2wwB9OjnPyaB/x6FnQaMkfkgM+aBtFKXu/57t4+4uzZvoPty1rXta1oXYd2vOHAF28/+unPd06evPPp+XOwFwW8dgf2CmUYQNh/Yq7U9wczmSAQDkqGfEegwNZZcOTLe9156yzuhkxcJIMYBGeRTXkrbpF97qG9c9Jb4qmi+DFp9h/evoKxORnfYm1iXoV8w7jQSMesVPu1j86/npEJ+mRiN04g6CNlZl1/eMPSXzGwlT5/SAaboQCpYpypABfN6sw7es+x274+22RKWpLSuH/9EvsLNqqo5z3WZ+XmdqTSGx6+9V6PMS60Oi6u68tz3TExrP9aAeAHID/i2WR+UBoZnobEqDhkW3ZqnjooNsAnVNMcApoE4XwRaMKk1clbpWRraXOBRhqZE7tg6ayX+gPnwQq7KspdN4aRW9h3l5wGcqHelwj0Q7MGQ0TAAKJBfY3Y9RYGGptCddqJvNzwiAUtcXHz6+ozvPxUKt95+ck5EeFzjoSFrZ8xZ0KgIAB5fFtuskVEJJqTEovHdY73SnSUtebExKnD9fnZOWkzVk2SxTN6GEGPAo6BYAZNSmfhY5K4MjckV6bwE+jJ2Ce+Kaosozx4kSWrIXBhwQs+8icUFwsax+gKhKn24sYN6APgoEW4j9kzCvz1CaVnMe2vRZTO8o8eGJa4+pgBWKnn3PSpWzNGyUnzzoqCpdEQP0jsWxCX/6KeF5UpovSOB6vSQmhSZlpdUZk7swFJ2q0y2nGzKC+hZm5d96pEDdM69WHmPSDI9mf7l0HdS+Cz7oWPfkzAn2liE1CjOSr8nzeipyJffbpFQW6sMACB+gaJi7EXulgvt0PXQo1pY2yioC+qg33ZnsUdKSlnn+DaWh84pDf6e9TPv2mfaiKtqMlKqw861I/PSGvQSJ1JIpaTbY4msm22lqYlQb5VOJtc75iHPszximFGQEpzIsgKgHzxHshiDBK6Zu5spuA5G5VYqKBdfQoU/8HI5OqXeHxS9XXyGBOuraH3bjbNxie19UWHz+aPjUMvFKo6VkbNQunVdehDfDfXCHaqvY23umzesdCS0FNuflVtglZFoO16Jc7DCGY3s/ze9xj44gjoEgK1q3AQgq6XRhZkZfoQVjooR/pcipiN5HYLjTcZxupSppsjfEfjdyPiUlDzFPUOdGOqeyxIplJm925YWpaUFh0YFvsWuWk8aECFeRU654iUGOQN7kFM0IPonT2IkZThTxIiEqQqD/K446u7DTlZoeF+weTXXuOK74U6gv0qKnEP8972I+xG2iDHUc7ZPfpo5kxuxX8OQ+/Z56xXOT/6hBF6gvDmEePqnbb+QlZzRpEdzHcohUgxiuPX8w3ZQfc/cxv8zM3vSf8zQk3ZkA76Jl9m9hn3x5cxMddUbqMkgpjEpGhbxUrKZgx7zUrxLWq1ublm/j4Xx1PZlB+3CPZgooYBEwJxyIta1XCLKOda2KC9STMjys+buU2ZvIpbZHgmaur8fX7PbhdNYSSThJmyUSNY3SP+i/bc4RYzh5jEaMH3kAh0SQkxw1jo13+rsroMJpkmlws/7N9HEArXXzwggkP0yqkrvTYu0UPIOVdc2HDyyArOj398j6YadJ1Hh4bodCEhOjSb+R2jCNFxdslj+691IYoY3f8B8xSpMwAAAHicnY+xasMwEIY/JU5KIXTI0o4eQpfgYIsm0AyFZDB0bIZMXQwVxsTYYCd5lL5G36jP0t+O6NKlRIfQx+k7nQ6Y8ImhW4Ypj54H3PDqeciCL88BUxN4HjExieex8h8yTXCrzKyv6njAHc+eh7zz5jmQ8+15xIO59zxmZl7Y/EbKnC0ZLQccDWcKSoWDTbfS+TZrD645F2Wp3E4XOScJmWR2Lj+VmSClpuLYn40MR4jVWLHOtfZ/Gl7MhCURK22rasuTHq+rY1o3uQvtIg7X4d+PKZkso1VkYyv/6un2vdRK6qbp/nKZgL1r2qKuwkT9r3//B8IrUk0AeJxtzblOAgEAANG3SyPRBBUP8Ko8URHYCIraoYIKnnhCjAV0VvyZR/w8JMTSSSaZboSG9CNd/3EzMBCKGTUmYdyESUlTps2YlZI2Z96CRUuWrVi1Zt2GjE1btmXtyMkriOwqKtmzr+zAoSMVx06cqqo5c+5CXcOlK9eD9607TfcePHry7EVL26ueD59+fPkOwiA20nh779Q72Vz8L0rRLzIjGiMAAAAB//8AAnicY2BkYGDgAWIxIGZiYATCQCBmAfMYAAcZAIAAAAABAAAAANsgv+4AAAAAph4T2QAAAADik3dY')format("woff");}.ff4{font-family:ff4;line-height:0.920410;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff5;src:url('data:application/font-woff;base64,d09GRgABAAAAAAQsAA4AAAAABggAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEEAAAABwAAAAcS1S8L0dERUYAAAP0AAAAGwAAAB4AJwALT1MvMgAAAbgAAAA+AAAAVmClZ+hjbWFwAAACDAAAAD8AAAFCAA8Gy2N2dCAAAAJMAAAABAAAAAQARAURZ2FzcAAAA+wAAAAIAAAACP//AANnbHlmAAACXAAAAHoAAACEJzg3oGhlYWQAAAFEAAAANgAAADbUsBNfaGhlYQAAAXwAAAAbAAAAJApWBgZobXR4AAAB+AAAABQAAAAUDc8BRGxvY2EAAAJQAAAADAAAAAwAWACabWF4cAAAAZgAAAAgAAAAIAAZAGduYW1lAAAC2AAAAPEAAAHdPX9zzXBvc3QAAAPMAAAAHwAAADWdpsefAAEAAAAGzM0VAnzoXw889QAfCAAAAAAAouMnKgAAAADNUNUWAEQAAAUABVUAAAAIAAIAAAAAAAB4nGNgZGBgDWUAAjYQwcDKwMDIgApYAQxIAG0AAAEAAAAFAAgAAgAAAAAAAgAQAC8AAQAAAAAALgAAAAB4nGNgZLJknMDAysDAasw6k4GBUQ5CM19nSGMSYmBgYmBlZoABRgYkEJDmmgKkFBgUWENBfAgJUQMARUQGUQAAAuwARAAAAAACqgAAAjkAAAYAAQB4nGNgYGBmgGAZBkYGELAB8hjBfBYGBSDNAoQgvsL//xDy/2OoSgZGNgYYk4GRCUgwMaACRojRwxkAAGLqBt0AAEQFEQAAACwALAAsACwAQnicY2BicGFgYEphDWVgZmBn0NvIyKBvs4mdheGt0UY21js2m5iZgEyGjcwgYVaQ8CZ2NsY/NpsYQeLGgoqCqoqCii5MCv9UGGf8y2AN/bXaheUsA9BIRiDBCoRgcxkUoSoZGVgY/igwH/jjwMrwm0GB5QBQFQBplBwnAAB4nJWPQWrCQBhG32i0FKzrUqRkXYkkQ5UidJGF4saNFPdZDCEQEhj1Kt30Pj1Jb9AL9IsOhW4KTpjMy8yb//8CjHjH0A3DmMfAPW54DdzniY/AkZyvwANG5i7wkLF5kWmiW+1Mzrc67slPAvd5YxU4kvMZeMA934GHTMwD+e+zYaq3p6KgZqsK5N3YTHNfFfVW3zscJScdFxLZufJUF4I1LQ3H8+plOGIsM1KtS83/mlyMjLnCLzStblmeVbRtjuvWly62szRexn/DaCObJ4vEplbuVX+xVz7PQUqXuut9Scre+UPVNnGmftfV/AGsOUPLAAAAeJxjYGLAD1iBmJGBiYGZkYnDLzE31TdVzwAADkUCqgAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCFjAG8RgAA8oAMwAAAAABAAAAANsgv+4AAAAAouMnKgAAAADNUNUW')format("woff");}.ff5{font-family:ff5;line-height:0.666504;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff6;src:url('data:application/font-woff;base64,d09GRgABAAAAAAQ0AA4AAAAABjgAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEGAAAABwAAAAcYB+le0dERUYAAAP8AAAAGwAAAB4AJwALT1MvMgAAAbQAAAA+AAAAVmClZ69jbWFwAAACCAAAAD8AAAFCAA8Gy2N2dCAAAAJIAAAABAAAAAQARAURZ2FzcAAAA/QAAAAIAAAACP//AANnbHlmAAACWAAAAHoAAACEJzg3oGhlYWQAAAFEAAAANQAAADbpdS/eaGhlYQAAAXwAAAAbAAAAJApWBgZobXR4AAAB9AAAABQAAAAUDZYBRGxvY2EAAAJMAAAADAAAAAwAWACabWF4cAAAAZgAAAAaAAAAIAAIADduYW1lAAAC1AAAAPcAAAINAk513XBvc3QAAAPMAAAAJgAAADWc2cgFeJxjYGRgYABiq6Icj3h+m68M8hwMILBMTvgmiL734OJmBhcGBlYG1lAgl4OBCSQKAP/WCMgAAAB4nGNgZGBgDWUAAjYQwcDKwMDIgApYAQxIAG0AeJxjYGRgYGBl4GBgYgABRgYE0AMRAAKzAEAAAHicY2BkYmCcwMDKwMBqzDqTgYFRDkIzX2dIYxJiYGBiYGVmgAFGBiQQkOaaAqQUGBRYQ0F8CAlRAwAyyQYYAAAC7ABEAAAAAAKqAAACAAAABgABAHicY2BgYGaAYBkGRgYQsAHyGMF8FgYFIM0ChCC+wv//EPL/Y6hKBkY2BhiTgZEJSDAxoAJGiNHDGQAAYuoG3QAARAURAAAALAAsACwALABCeJxjYGJwYWBgSmENZWBmYGfQ28jIoG+ziZ2F4a3RRjbWOzabmJmATIaNzCBhVpDwJnY2xj82mxhB4saCioKqioKKLkwK/1QYZ/zLYA39tdqF5SwD0EhGIMEKhGBzGRShKhkZWBj+KDAf+OPAyvCbQYHlAFAVAGmUHCcAAHicnY/BasJAEIa/1WgpSA9e2mMO0otEkqUK9VDQg5CjHjz1EugSgsFAoj5KX6Nv1Gfpn7j00ktxh2U/Zr/Z2QFGfGJol2HMs+ced6Se+8z48hwwNoHnASOTeB4q/yHTBPfKTLqqlns88Oq5zztbz4Gcb88Dnsyj5yET88bqN1KmrMloOOCouVBQKhys2pVO11lzcPWlKEvldrrIOUvIJLNz+bnMBBsqjpy6s5bhCLEaK9a51P5Pw6uZMCdioW1VbXnR49XxtKnq3IV2FofL8O/HlEzm0SKysZV/83T7TmoktdO0f7lOwN7VTVEdw0T9b3//B9MFUmUAeJxjYGIAg//GDGkM2AArEDMyMDEwMzJx+CXmpvqm6hkAAFSYBEIAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIWMAbxGAADygAzAAAAAAEAAAAA2yC/7gAAAACmHhPZAAAAAN7g0bM=')format("woff");}.ff6{font-family:ff6;line-height:0.666504;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff7;src:url('data:application/font-woff;base64,d09GRgABAAAAAAhoAA4AAAAACwwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAITAAAABwAAAAcYB+le0dERUYAAAgwAAAAHAAAAB4AJwAVT1MvMgAAAbgAAABCAAAAVmIsZ7ZjbWFwAAACMAAAAGIAAAFaEaklQ2N2dCAAAAKUAAAABAAAAAQARAURZ2FzcAAACCgAAAAIAAAACP//AANnbHlmAAACuAAABD0AAATwi69xlmhlYWQAAAFEAAAANQAAADbpdS5YaGhlYQAAAXwAAAAdAAAAJApXBIpobXR4AAAB/AAAADIAAAA8MZgGCmxvY2EAAAKYAAAAIAAAACAHTgi+bWF4cAAAAZwAAAAaAAAAIAATAHBuYW1lAAAG+AAAAPgAAAINAlB34XBvc3QAAAfwAAAAOAAAAEmdWMhyeJxjYGRgYADiL+YtUfH8Nl8Z5DkYQGCZnPBNEH3vwcXNDM7/qlgZWEOBXA4GJpAoADUNCugAAAB4nGNgZGBgDf1XxcDAxgACrAwMjAyogB8AN+gB7wAAAHicY2BkYGDgZ3BkYGYAAUYGBNADEQAJaQCEAAB4nGNgZC5hnMDAysDAasw6k4GBUQ5CM19nSGMSYmBgYmBlZoABRgYkEJDmmgKkFBgsWUP/VQH1hzK2wdQAAHZaCKUAAHicY3rD4MIABEyrQAQY5bMwMISxMDCqAulSIC4DYmcgTgbiWUAcBcThbAyMDADBVgXVAAB4nN2NywmAQAxEX9b1rx14sAAPHkS0D0tX8G4hMX7BFnxhksxACBBwqUI4mMzJ6T2DzYwEZ1XT0DGqWnbsLb2qbrrqovN9eyMRbyDOmuOLXC8fvCmM4iQly4uSX7ADpR8OGAAAAEQFEQAAACwALAAsACwATgB6AKAA3gE2AWYBrAHWAh4CYgJ4eJxtlHtMU1ccx8/v3LZ3g0Bp6QOUPm4vj2ChQG8fFEptEFYH7qWA4AQ0WzJRI5Pykoe6gFOGYiYMsR3NhM2IihPGhjMZ1pkF3LL5315ZosuWuTlZZrJHInjcuYWR/bHc5Oack5Pv7/v7fM85CKMihPCL0nLEIBZZJgBluSdZCZq3Tsik37knGUyHaIIRl6Xi8iQrg0X3JIjrgoJTpHAKrggbSTIMkR3S8gfniySfI4QA1ZM26EMfIDVC8XYP2G28iZXxplS7zSFYNWqVrH5n85rHlPKYTHeexVcVJG1WQ/DpQqnUbra4uyoPhBFGFY9uMZeka1E00lKVOKVgVSriMG/C8XGayDiVN8kq5sPh+XvXwvNnejtONPa2tx/Fx8EFLeQwuUE+I4dgHzjJ9u8hBvzw1u1b1Buk0J7vU12qCoJCpYd8UHN2wUptKmwWMIPdgVMyWKs3jXi49WZWlukzj0vXLnzbVZRssaS7evDcYZfZwoh9Nj0aYrqpVjpCgt2BlHabaEqt0oo9/rdfxHIsb3M6xA1NDVAdeLOxofM5fZFGX/5b3+D93aT2AO5wZcmYVS5PFbwCCcfPnx4o25arjlZ69tWeeu/KtP8m2bzrtlIZpdBHRxg3Uz4ttLaXTpar/FtRq9FSRJFiEe500elYKv6/7lh4aDD0jz34pHsmWWfTJNkE6/7hpmeLN8XK9Yb1IUHYWbmlt4AtlBsc4dPvjPl78NeP3xiavttarEv3Pb9q9eVrwaEyuTHWkLPL59v90l5/lc/DSmP0Nc76qZPVG49tpcjROoSYr6jfRJREHXN2Cp96dAosp6YhCMsZFIACcBZR4Xzv1nJjUoaWkGjHk6SUdwtRZANcdzPexbCqNHju9QKdxcK5+37C7Q8PifovUB7vUn0DyqT6Hoi0Rs9LKrbHociEN6WlplEEWKFixJIiIQtQJCD39JSO3PtxYvCLTaC9u+esK0en5/knQiGJ8+AznR1ZnU/tCOEzJSV/XB4nZAZ0Aao/XuvOdboSE8jP5E4i+Wb71T1zs/uP1QyL2QSol2bqRYPQahBoKQ5iQcyBxgCcKRbYQBmPdV4sI6fyC4zuXHkU9JPyCpNeK8mAeFXMwpWpYk9KqyGROcumFNK8GbSFar4dObc8yqZF9LCSotMCK1mCaiV62UqX4gRXdH/616Wp3y8MtQ9/OTJ4p5/k19X5G1rqqtv4NS2VLw8MNLa34XPRH71x4eObwVdndIbJ1v4P3z/ZehHyRkeDgaMnDi3O7u2qODhz9cgY5b2Z+hmlfnTITN2I7VEr9JZqlOo4FJmIB1G8qbb4JczqJTv474LXNoz8GqFNfqG083L4bH8oxDgo685synoYt5aU/Dl9EWCG/BAg18nGbfm562ogERK0kE5Jz84tkaa5A/1J6Rd5wxC3/CoBkqBFIxNe9ErRAjJKwnTXP/OuXFQAAAB4nJ2PwWrCQBCGv9VoKUgPXtpjDtKLRJKlCvVQ0INQb/XgqZdAlxAMCSTqo/Q1+kZ9lv6JSy+9FHdY9mP2m50dYMQnhnYZxjx67nHDq+c+M748B4xN4HnAyCSeh8p/yDTBrTKTrqrlHnc8e+7zzpvnQM635wEP5t7zkIl5YfUbW6asSWk44Kg5k1MoHKzatZ2u0+bg6nNeFMrtdJFxkpBKZueyU5EKNlSUHLuzluEIsRor1rnU/k/Di5kwJ2KhbVVtedLjVXncVHXmQjuLw2X492NKJvNoEdnYyr96un0nNZLaadq/XCZg7+omr8owUf/r3/8B2KNSbXicY2BiAIP/xgxpDNgAPxAzMjAxMANZwgwiDKIMYgziDJIMUgzSDDKMTBx+ibmpvql6BgCI0gUuAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQj4gZgHzGAAEOAA9AAAAAQAAAADbIL/uAAAAAKYeE9kAAAAA3uDRsw==')format("woff");}.ff7{font-family:ff7;line-height:0.856934;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff8;src:url('data:application/font-woff;base64,d09GRgABAAAAAAP8AA4AAAAABcgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAD4AAAABoAAAAc02wg70dERUYAAAPEAAAAHAAAAB4AJwAKT1MvMgAAAbAAAAA9AAAAVlSXXsBjbWFwAAACAAAAAD8AAAFCAA8Gy2N2dCAAAAJAAAAABAAAAAQAIQJ5Z2FzcAAAA7wAAAAIAAAACP//AANnbHlmAAACUAAAAFQAAABUPaWWPmhlYWQAAAFEAAAALgAAADZYx6R/aGhlYQAAAXQAAAAbAAAAJAPFAVJobXR4AAAB8AAAABAAAAAQA+cAIWxvY2EAAAJEAAAACgAAAAoAVABUbWF4cAAAAZAAAAAfAAAAIABIADluYW1lAAACpAAAAPwAAAHg1lCgFnBvc3QAAAOgAAAAHAAAACr/oAAreJxjYGQAA2Fj/Qvx/DZfGeSZX4D4NaobGuC0IgMDoxbTLCCXg4EJJAoAAPEIhAAAeJxjYGRgYJrFAASMvmBSi4GRARWwAAAeEwEcAHicY2BkYGBgYeBgYGIAARDJyAASc2DQAwkAAASBAIIAeJxjYGT0ZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrByMsAAIwMSCEhzTQFSCgwKTLNAfAgJUQMAoqQIBAAAAAFNACEAAAAAAU0AAAFNAAB4nGNgYGBmgGAZBkYGELAB8hjBfBYGBSDNAoQgvsL//xDy/2OoSgZGNgYYk4GRCUgwMaACRojRwxkAAGLqBt0AACECeQAAACoAKgAqACoAAAACACEAAAEqApoAAwAHAC6xAQAvPLIHBADtMrEGBdw8sgMCAO0yALEDAC88sgUEAO0ysgcGAfw8sgECAO0yMxEhESczESMhAQnox8cCmv1mIQJYAHicnY9BSsNAGIW/adNQQSS4caGL2QqmJENbsAfoqnXRgrjNIoRCm8CkvYQH8CqexSt4Cl/idNON4MAw3/z/e++fAa75wNAtw5jbwANiHgMPeeI9cETCV+ARN2YcOCYxz1Ka6EqVpHd1PFD+feAhb2SBIyyfgUc88B04xpo7VqzZUlDTksvDar0t6jYXvdDgOai516Xxh0LnUsWaY396KkqlOyZyWhbal3kpG2kqTgop5PhV5czUmWs7aRxTBTf1cdn4qrRuktmFPb8j3ZTVaV94lfJZOk9d5qT+awyXdniVwEu+639wfnWm2VbN0re7pu5mZ1P7n/wfKWBHpnicY2BiAIP/0xg0gBQjAzpgAYsyMTADADrVAcsAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCZiBmAfMYAAO/ADJ4nGNgYGBkAILbCvvfgega1Q0NMBoAR/MGTAAA')format("woff");}.ff8{font-family:ff8;line-height:0.666000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff9;src:url('data:application/font-woff;base64,d09GRgABAAAAAAQ8AA4AAAAABnQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEIAAAABwAAAAcYCBgcEdERUYAAAQEAAAAGwAAAB4AJwALT1MvMgAAAbQAAAA+AAAAVmClZ69jbWFwAAACCAAAAD8AAAFCAA8Gy2N2dCAAAAJIAAAABAAAAAQARAURZ2FzcAAAA/wAAAAIAAAACP//AANnbHlmAAACWAAAAHoAAACEJzg3oGhlYWQAAAFEAAAANQAAADbpderTaGhlYQAAAXwAAAAbAAAAJApWBgZobXR4AAAB9AAAABQAAAAUDZYBRGxvY2EAAAJMAAAADAAAAAwAWACabWF4cAAAAZgAAAAaAAAAIAAIADduYW1lAAAC1AAAAQAAAAJJs5SW8HBvc3QAAAPUAAAAJgAAADWc2cgFeJxjYGRgYADi649tleL5bb4yyHMwgMAyuXNnQfS9Bxe3MLgwMLAysIYCuRwMTCBRADTFCjEAAAB4nGNgZGBgDWUAAjYQwcDKwMDIgApYAQxIAG0AeJxjYGRgYGBl4GBgYgABRgYE0AMRAAKzAEAAAHicY2BkYmCcwMDKwMBqzDqTgYFRDkIzX2dIYxJiYGBiYGVmgAFGBiQQkOaaAqQUGBRYQ0F8CAlRAwAyyQYYAAAC7ABEAAAAAAKqAAACAAAABgABAHicY2BgYGaAYBkGRgYQsAHyGMF8FgYFIM0ChCC+wv//EPL/Y6hKBkY2BhiTgZEJSDAxoAJGiNHDGQAAYuoG3QAARAURAAAALAAsACwALABCeJxjYGJwYWBgSmENZWBmYGfQ28jIoG+ziZ2F4a3RRjbWOzabmJmATIaNzCBhVpDwJnY2xj82mxhB4saCioKqioKKLkwK/1QYZ/zLYA39tdqF5SwD0EhGIMEKhGBzGRShKhkZWBj+KDAf+OPAyvCbQYHlAFAVAGmUHCcAAHicrY+7asNAEEXP+hUCJq1TqnckJCV24c4imBSuXJhUIYJshJCQQLL9KWnyQ/moFLmSl3QpAp5l2cPMvTszwJQPDF0YZoSOB1zx7HjIPV+OR8zMneMxU/PieKL8p5RmdK1M0Ls6HnDDk+Mh77w6Hknz7XjMrXl0PCEwBevfs2VOQkpLgaXhRE6pY/GVr0VvsO5iO0/StrDNKS9L6yd1qcJOuoyjVKm87Gx2LFPBRs6KQ/82Ulg8Yk0U6l3p/q//2ROxUG6pG+ufmAe1qavDpm4y68VB6K28P+ZUJVr4Sz8OY5kutfu+97TydLt28533Y2+bNq8rL9JMF2v3AwPQYX14nGNgYgCD/8YMaQzYACsQMzIwMTAzMnH4Jeam+qbqGQAAVJgEQgAAAAAAAf//AAJ4nGNgZGBg4AFiMSBmYmAEQhYwBvEYAAPKADMAAAAAAQAAAADbIL/uAAAAAKYezs0AAAAA3uDRtA==')format("woff");}.ff9{font-family:ff9;line-height:0.666504;font-style:normal;font-weight:normal;visibility:visible;}
.m0{transform:matrix(0.408497,0.000000,0.000000,0.408497,0,0);-ms-transform:matrix(0.408497,0.000000,0.000000,0.408497,0,0);-webkit-transform:matrix(0.408497,0.000000,0.000000,0.408497,0,0);}
.m1{transform:matrix(1.633987,0.000000,0.000000,1.633987,0,0);-ms-transform:matrix(1.633987,0.000000,0.000000,1.633987,0,0);-webkit-transform:matrix(1.633987,0.000000,0.000000,1.633987,0,0);}
.v0{vertical-align:0.000000px;}
.ls15{letter-spacing:-0.163392px;}
.ls1c{letter-spacing:-0.141312px;}
.lsf{letter-spacing:-0.136896px;}
.ls3{letter-spacing:-0.128064px;}
.ls5{letter-spacing:-0.123648px;}
.ls6{letter-spacing:-0.119232px;}
.lsa{letter-spacing:-0.114816px;}
.ls7{letter-spacing:-0.110400px;}
.ls18{letter-spacing:-0.105984px;}
.ls11{letter-spacing:-0.101568px;}
.ls2{letter-spacing:-0.097152px;}
.ls13{letter-spacing:-0.092736px;}
.ls17{letter-spacing:-0.088320px;}
.ls4{letter-spacing:-0.083904px;}
.ls9{letter-spacing:-0.079488px;}
.lsd{letter-spacing:-0.075072px;}
.lse{letter-spacing:-0.070656px;}
.ls1b{letter-spacing:-0.061824px;}
.ls8{letter-spacing:-0.057408px;}
.ls14{letter-spacing:-0.052992px;}
.ls12{letter-spacing:-0.048576px;}
.ls10{letter-spacing:-0.044160px;}
.lsb{letter-spacing:-0.039744px;}
.lsc{letter-spacing:-0.030912px;}
.ls0{letter-spacing:0.000000px;}
.ls19{letter-spacing:0.080736px;}
.ls1{letter-spacing:1.907712px;}
.ls16{letter-spacing:1.925376px;}
.ls1a{letter-spacing:1.929792px;}
.sc_{text-shadow:none;}
.sc0{text-shadow:-0.015em 0 transparent,0 0.015em transparent,0.015em 0 transparent,0 -0.015em transparent;}
@media screen and (-webkit-min-device-pixel-ratio:0){
.sc_{-webkit-text-stroke:0px transparent;}
.sc0{-webkit-text-stroke:0.015em transparent;text-shadow:none;}
}
.ws0{word-spacing:0.000000px;}
._5{margin-left:-3.580128px;}
._6{margin-left:-2.509920px;}
._3{margin-left:-1.370496px;}
._4{width:1.084800px;}
._0{width:2.138592px;}
._7{width:3.312000px;}
._8{width:4.667136px;}
._a{width:6.438240px;}
._d{width:9.619872px;}
._c{width:12.093408px;}
._e{width:16.745472px;}
._b{width:23.037984px;}
._9{width:36.960000px;}
._2{width:657.286080px;}
._1{width:806.765760px;}
.fc2{color:rgb(255,0,0);}
.fc1{color:rgb(4,50,255);}
.fc0{color:rgb(0,0,0);}
.fs3{font-size:27.840000px;}
.fs0{font-size:40.320000px;}
.fs1{font-size:44.160000px;}
.fs2{font-size:48.000000px;}
.fs4{font-size:72.000000px;}
.y0{bottom:-0.816993px;}
.y37{bottom:62.745098px;}
.y5{bottom:63.137255px;}
.y6e{bottom:121.960784px;}
.y36{bottom:123.137255px;}
.y6d{bottom:141.568627px;}
.y35{bottom:143.529412px;}
.y6c{bottom:161.176471px;}
.y33{bottom:164.313725px;}
.y34{bottom:168.235294px;}
.y6b{bottom:180.784314px;}
.y32{bottom:184.705882px;}
.y6a{bottom:200.392157px;}
.y31{bottom:205.490196px;}
.y69{bottom:220.000000px;}
.y30{bottom:226.274510px;}
.y68{bottom:239.607843px;}
.y2f{bottom:257.647059px;}
.y67{bottom:259.215686px;}
.y2d{bottom:278.431373px;}
.y66{bottom:278.823529px;}
.y2e{bottom:282.352941px;}
.y65{bottom:298.431373px;}
.y2b{bottom:298.823529px;}
.y2c{bottom:302.745098px;}
.y64{bottom:318.039216px;}
.y2a{bottom:319.215686px;}
.y29{bottom:340.000000px;}
.y63{bottom:347.843137px;}
.y28{bottom:360.392157px;}
.y62{bottom:368.627451px;}
.y27{bottom:381.176471px;}
.y61{bottom:389.019608px;}
.y26{bottom:401.568627px;}
.y60{bottom:409.411765px;}
.y25{bottom:422.352941px;}
.y5f{bottom:430.196078px;}
.y24{bottom:442.745098px;}
.y5e{bottom:450.588235px;}
.y22{bottom:463.137255px;}
.y23{bottom:467.058824px;}
.y5d{bottom:471.372549px;}
.y21{bottom:483.921569px;}
.y5c{bottom:492.156863px;}
.y20{bottom:504.313725px;}
.y8c{bottom:514.509804px;}
.y5b{bottom:523.921569px;}
.y1f{bottom:525.098039px;}
.y8b{bottom:534.117647px;}
.y1e{bottom:545.490196px;}
.y8a{bottom:553.725490px;}
.y1d{bottom:566.274510px;}
.y59{bottom:571.764706px;}
.y89{bottom:573.333333px;}
.y5a{bottom:575.686275px;}
.y58{bottom:592.156863px;}
.y88{bottom:592.941176px;}
.y1c{bottom:598.039216px;}
.y87{bottom:612.549020px;}
.y57{bottom:612.941176px;}
.y86{bottom:632.156863px;}
.y55{bottom:633.333333px;}
.y56{bottom:637.254902px;}
.y1b{bottom:645.882353px;}
.y85{bottom:651.764706px;}
.y54{bottom:653.725490px;}
.y1a{bottom:666.666667px;}
.y84{bottom:671.372549px;}
.y53{bottom:674.509804px;}
.y19{bottom:687.058824px;}
.y83{bottom:690.980392px;}
.y52{bottom:695.294118px;}
.y18{bottom:707.843137px;}
.y82{bottom:710.588235px;}
.y51{bottom:726.666667px;}
.y17{bottom:728.235294px;}
.y81{bottom:730.196078px;}
.y4f{bottom:747.450980px;}
.y16{bottom:748.627451px;}
.y80{bottom:749.803922px;}
.y50{bottom:751.372549px;}
.y4e{bottom:767.843137px;}
.y15{bottom:769.411765px;}
.y4d{bottom:788.627451px;}
.y7f{bottom:789.019608px;}
.y14{bottom:789.803922px;}
.y7e{bottom:808.627451px;}
.y4c{bottom:809.019608px;}
.y13{bottom:810.588235px;}
.y7d{bottom:828.235294px;}
.y4a{bottom:829.411765px;}
.y12{bottom:831.372549px;}
.y4b{bottom:833.333333px;}
.y7c{bottom:847.843137px;}
.y49{bottom:850.196078px;}
.y10{bottom:862.745098px;}
.y11{bottom:866.666667px;}
.y7b{bottom:867.450980px;}
.y48{bottom:870.588235px;}
.yf{bottom:883.529412px;}
.y7a{bottom:887.058824px;}
.y47{bottom:891.372549px;}
.ye{bottom:903.921569px;}
.y79{bottom:906.666667px;}
.y45{bottom:923.137255px;}
.yd{bottom:924.313725px;}
.y78{bottom:926.274510px;}
.y46{bottom:927.058824px;}
.y44{bottom:943.529412px;}
.yc{bottom:945.098039px;}
.y77{bottom:945.882353px;}
.y43{bottom:964.313725px;}
.yb{bottom:965.490196px;}
.y42{bottom:984.705882px;}
.y76{bottom:985.098039px;}
.ya{bottom:986.274510px;}
.y75{bottom:1004.705882px;}
.y41{bottom:1005.098039px;}
.y9{bottom:1006.666667px;}
.y40{bottom:1025.882353px;}
.y8{bottom:1027.450980px;}
.y74{bottom:1034.901961px;}
.y3f{bottom:1046.274510px;}
.y7{bottom:1047.843137px;}
.y3d{bottom:1067.058824px;}
.y6{bottom:1068.627451px;}
.y3e{bottom:1070.980392px;}
.y73{bottom:1082.352941px;}
.y3c{bottom:1087.843137px;}
.y4{bottom:1089.803922px;}
.y72{bottom:1101.960784px;}
.y3{bottom:1109.803922px;}
.y3b{bottom:1119.215686px;}
.y71{bottom:1121.568627px;}
.y2{bottom:1130.588235px;}
.y39{bottom:1140.000000px;}
.y70{bottom:1141.176471px;}
.y3a{bottom:1143.921569px;}
.y1{bottom:1151.764706px;}
.y38{bottom:1160.392157px;}
.y6f{bottom:1160.784314px;}
.h6{height:18.555469px;}
.h2{height:26.873438px;}
.h4{height:29.777813px;}
.h3{height:30.705000px;}
.h5{height:31.992188px;}
.h7{height:47.988281px;}
.h0{height:1294.117647px;}
.h1{height:1294.934641px;}
.w0{width:1000.000000px;}
.w1{width:1000.816993px;}
.x0{left:0.000000px;}
.x1{left:117.647059px;}
.x1a{left:158.823451px;}
.x5{left:163.327686px;}
.x6{left:169.046627px;}
.x11{left:202.092588px;}
.x7{left:204.348078px;}
.x8{left:210.067059px;}
.x12{left:213.530471px;}
.x2{left:287.582118px;}
.xb{left:339.456000px;}
.xc{left:345.174941px;}
.x19{left:357.514431px;}
.x17{left:408.592157px;}
.x18{left:420.030196px;}
.x13{left:485.761569px;}
.x14{left:497.199608px;}
.xf{left:620.589020px;}
.x10{left:632.027059px;}
.x15{left:682.650980px;}
.x16{left:694.089020px;}
.x9{left:725.708235px;}
.xa{left:757.162745px;}
.xd{left:830.302353px;}
.xe{left:836.021176px;}
.x3{left:868.906667px;}
.x4{left:874.625882px;}
@media print{
.v0{vertical-align:0.000000pt;}
.ls15{letter-spacing:-0.133328pt;}
.ls1c{letter-spacing:-0.115311pt;}
.lsf{letter-spacing:-0.111707pt;}
.ls3{letter-spacing:-0.104500pt;}
.ls5{letter-spacing:-0.100897pt;}
.ls6{letter-spacing:-0.097293pt;}
.lsa{letter-spacing:-0.093690pt;}
.ls7{letter-spacing:-0.090086pt;}
.ls18{letter-spacing:-0.086483pt;}
.ls11{letter-spacing:-0.082879pt;}
.ls2{letter-spacing:-0.079276pt;}
.ls13{letter-spacing:-0.075673pt;}
.ls17{letter-spacing:-0.072069pt;}
.ls4{letter-spacing:-0.068466pt;}
.ls9{letter-spacing:-0.064862pt;}
.lsd{letter-spacing:-0.061259pt;}
.lse{letter-spacing:-0.057655pt;}
.ls1b{letter-spacing:-0.050448pt;}
.ls8{letter-spacing:-0.046845pt;}
.ls14{letter-spacing:-0.043241pt;}
.ls12{letter-spacing:-0.039638pt;}
.ls10{letter-spacing:-0.036035pt;}
.lsb{letter-spacing:-0.032431pt;}
.lsc{letter-spacing:-0.025224pt;}
.ls0{letter-spacing:0.000000pt;}
.ls19{letter-spacing:0.065881pt;}
.ls1{letter-spacing:1.556693pt;}
.ls16{letter-spacing:1.571107pt;}
.ls1a{letter-spacing:1.574710pt;}
.ws0{word-spacing:0.000000pt;}
._5{margin-left:-2.921384pt;}
._6{margin-left:-2.048095pt;}
._3{margin-left:-1.118325pt;}
._4{width:0.885197pt;}
._0{width:1.745091pt;}
._7{width:2.702592pt;}
._8{width:3.808383pt;}
._a{width:5.253604pt;}
._d{width:7.849816pt;}
._c{width:9.868221pt;}
._e{width:13.664305pt;}
._b{width:18.798995pt;}
._9{width:30.159360pt;}
._2{width:536.345441pt;}
._1{width:658.320860pt;}
.fs3{font-size:22.717440pt;}
.fs0{font-size:32.901120pt;}
.fs1{font-size:36.034560pt;}
.fs2{font-size:39.168000pt;}
.fs4{font-size:58.752000pt;}
.y0{bottom:-0.666667pt;}
.y37{bottom:51.200000pt;}
.y5{bottom:51.520000pt;}
.y6e{bottom:99.520000pt;}
.y36{bottom:100.480000pt;}
.y6d{bottom:115.520000pt;}
.y35{bottom:117.120000pt;}
.y6c{bottom:131.520000pt;}
.y33{bottom:134.080000pt;}
.y34{bottom:137.280000pt;}
.y6b{bottom:147.520000pt;}
.y32{bottom:150.720000pt;}
.y6a{bottom:163.520000pt;}
.y31{bottom:167.680000pt;}
.y69{bottom:179.520000pt;}
.y30{bottom:184.640000pt;}
.y68{bottom:195.520000pt;}
.y2f{bottom:210.240000pt;}
.y67{bottom:211.520000pt;}
.y2d{bottom:227.200000pt;}
.y66{bottom:227.520000pt;}
.y2e{bottom:230.400000pt;}
.y65{bottom:243.520000pt;}
.y2b{bottom:243.840000pt;}
.y2c{bottom:247.040000pt;}
.y64{bottom:259.520000pt;}
.y2a{bottom:260.480000pt;}
.y29{bottom:277.440000pt;}
.y63{bottom:283.840000pt;}
.y28{bottom:294.080000pt;}
.y62{bottom:300.800000pt;}
.y27{bottom:311.040000pt;}
.y61{bottom:317.440000pt;}
.y26{bottom:327.680000pt;}
.y60{bottom:334.080000pt;}
.y25{bottom:344.640000pt;}
.y5f{bottom:351.040000pt;}
.y24{bottom:361.280000pt;}
.y5e{bottom:367.680000pt;}
.y22{bottom:377.920000pt;}
.y23{bottom:381.120000pt;}
.y5d{bottom:384.640000pt;}
.y21{bottom:394.880000pt;}
.y5c{bottom:401.600000pt;}
.y20{bottom:411.520000pt;}
.y8c{bottom:419.840000pt;}
.y5b{bottom:427.520000pt;}
.y1f{bottom:428.480000pt;}
.y8b{bottom:435.840000pt;}
.y1e{bottom:445.120000pt;}
.y8a{bottom:451.840000pt;}
.y1d{bottom:462.080000pt;}
.y59{bottom:466.560000pt;}
.y89{bottom:467.840000pt;}
.y5a{bottom:469.760000pt;}
.y58{bottom:483.200000pt;}
.y88{bottom:483.840000pt;}
.y1c{bottom:488.000000pt;}
.y87{bottom:499.840000pt;}
.y57{bottom:500.160000pt;}
.y86{bottom:515.840000pt;}
.y55{bottom:516.800000pt;}
.y56{bottom:520.000000pt;}
.y1b{bottom:527.040000pt;}
.y85{bottom:531.840000pt;}
.y54{bottom:533.440000pt;}
.y1a{bottom:544.000000pt;}
.y84{bottom:547.840000pt;}
.y53{bottom:550.400000pt;}
.y19{bottom:560.640000pt;}
.y83{bottom:563.840000pt;}
.y52{bottom:567.360000pt;}
.y18{bottom:577.600000pt;}
.y82{bottom:579.840000pt;}
.y51{bottom:592.960000pt;}
.y17{bottom:594.240000pt;}
.y81{bottom:595.840000pt;}
.y4f{bottom:609.920000pt;}
.y16{bottom:610.880000pt;}
.y80{bottom:611.840000pt;}
.y50{bottom:613.120000pt;}
.y4e{bottom:626.560000pt;}
.y15{bottom:627.840000pt;}
.y4d{bottom:643.520000pt;}
.y7f{bottom:643.840000pt;}
.y14{bottom:644.480000pt;}
.y7e{bottom:659.840000pt;}
.y4c{bottom:660.160000pt;}
.y13{bottom:661.440000pt;}
.y7d{bottom:675.840000pt;}
.y4a{bottom:676.800000pt;}
.y12{bottom:678.400000pt;}
.y4b{bottom:680.000000pt;}
.y7c{bottom:691.840000pt;}
.y49{bottom:693.760000pt;}
.y10{bottom:704.000000pt;}
.y11{bottom:707.200000pt;}
.y7b{bottom:707.840000pt;}
.y48{bottom:710.400000pt;}
.yf{bottom:720.960000pt;}
.y7a{bottom:723.840000pt;}
.y47{bottom:727.360000pt;}
.ye{bottom:737.600000pt;}
.y79{bottom:739.840000pt;}
.y45{bottom:753.280000pt;}
.yd{bottom:754.240000pt;}
.y78{bottom:755.840000pt;}
.y46{bottom:756.480000pt;}
.y44{bottom:769.920000pt;}
.yc{bottom:771.200000pt;}
.y77{bottom:771.840000pt;}
.y43{bottom:786.880000pt;}
.yb{bottom:787.840000pt;}
.y42{bottom:803.520000pt;}
.y76{bottom:803.840000pt;}
.ya{bottom:804.800000pt;}
.y75{bottom:819.840000pt;}
.y41{bottom:820.160000pt;}
.y9{bottom:821.440000pt;}
.y40{bottom:837.120000pt;}
.y8{bottom:838.400000pt;}
.y74{bottom:844.480000pt;}
.y3f{bottom:853.760000pt;}
.y7{bottom:855.040000pt;}
.y3d{bottom:870.720000pt;}
.y6{bottom:872.000000pt;}
.y3e{bottom:873.920000pt;}
.y73{bottom:883.200000pt;}
.y3c{bottom:887.680000pt;}
.y4{bottom:889.280000pt;}
.y72{bottom:899.200000pt;}
.y3{bottom:905.600000pt;}
.y3b{bottom:913.280000pt;}
.y71{bottom:915.200000pt;}
.y2{bottom:922.560000pt;}
.y39{bottom:930.240000pt;}
.y70{bottom:931.200000pt;}
.y3a{bottom:933.440000pt;}
.y1{bottom:939.840000pt;}
.y38{bottom:946.880000pt;}
.y6f{bottom:947.200000pt;}
.h6{height:15.141263pt;}
.h2{height:21.928725pt;}
.h4{height:24.298695pt;}
.h3{height:25.055280pt;}
.h5{height:26.105625pt;}
.h7{height:39.158437pt;}
.h0{height:1056.000000pt;}
.h1{height:1056.666667pt;}
.w0{width:816.000000pt;}
.w1{width:816.666667pt;}
.x0{left:0.000000pt;}
.x1{left:96.000000pt;}
.x1a{left:129.599936pt;}
.x5{left:133.275392pt;}
.x6{left:137.942048pt;}
.x11{left:164.907552pt;}
.x7{left:166.748032pt;}
.x8{left:171.414720pt;}
.x12{left:174.240864pt;}
.x2{left:234.667008pt;}
.xb{left:276.996096pt;}
.xc{left:281.662752pt;}
.x19{left:291.731776pt;}
.x17{left:333.411200pt;}
.x18{left:342.744640pt;}
.x13{left:396.381440pt;}
.x14{left:405.714880pt;}
.xf{left:506.400640pt;}
.x10{left:515.734080pt;}
.x15{left:557.043200pt;}
.x16{left:566.376640pt;}
.x9{left:592.177920pt;}
.xa{left:617.844800pt;}
.xd{left:677.526720pt;}
.xe{left:682.193280pt;}
.x3{left:709.027840pt;}
.x4{left:713.694720pt;}
}
</style>
<script>
/*
Copyright 2012 Mozilla Foundation
Copyright 2013 Lu Wang <[email protected]>
Apachine License Version 2.0
*/
(function(){function b(a,b,e,f){var c=(a.className||"").split(/\s+/g);""===c[0]&&c.shift();var d=c.indexOf(b);0>d&&e&&c.push(b);0<=d&&f&&c.splice(d,1);a.className=c.join(" ");return 0<=d}if(!("classList"in document.createElement("div"))){var e={add:function(a){b(this.element,a,!0,!1)},contains:function(a){return b(this.element,a,!1,!1)},remove:function(a){b(this.element,a,!1,!0)},toggle:function(a){b(this.element,a,!0,!0)}};Object.defineProperty(HTMLElement.prototype,"classList",{get:function(){if(this._classList)return this._classList;
var a=Object.create(e,{element:{value:this,writable:!1,enumerable:!0}});Object.defineProperty(this,"_classList",{value:a,writable:!1,enumerable:!1});return a},enumerable:!0})}})();
</script>
<script>
(function(){/*
pdf2htmlEX.js: Core UI functions for pdf2htmlEX
Copyright 2012,2013 Lu Wang <[email protected]> and other contributors
https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/
var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6;
function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b<c;++b)a[b].addEventListener("dragstart",function(){return!1},!1)}
function clone_and_extend_objs(a){for(var b={},c=0,e=arguments.length;c<e;++c){var h=arguments[c],d;for(d in h)h.hasOwnProperty(d)&&(b[d]=h[d])}return b}
function Page(a){if(a){this.shown=this.loaded=!1;this.page=a;this.num=get_page_number(a);this.original_height=a.clientHeight;this.original_width=a.clientWidth;var b=a.getElementsByClassName(CSS_CLASS_NAMES.page_content_box)[0];b&&(this.content_box=b,this.original_scale=this.cur_scale=this.original_height/b.clientHeight,this.page_data=JSON.parse(a.getElementsByClassName(CSS_CLASS_NAMES.page_data)[0].getAttribute("data-data")),this.ctm=this.page_data.ctm,this.ictm=invert(this.ctm),this.loaded=!0)}}
Page.prototype={hide:function(){this.loaded&&this.shown&&(this.content_box.classList.remove("opened"),this.shown=!1)},show:function(){this.loaded&&!this.shown&&(this.content_box.classList.add("opened"),this.shown=!0)},rescale:function(a){this.cur_scale=0===a?this.original_scale:a;this.loaded&&(a=this.content_box.style,a.msTransform=a.webkitTransform=a.transform="scale("+this.cur_scale.toFixed(3)+")");a=this.page.style;a.height=this.original_height*this.cur_scale+"px";a.width=this.original_width*this.cur_scale+
"px"},view_position:function(){var a=this.page,b=a.parentNode;return[b.scrollLeft-a.offsetLeft-a.clientLeft,b.scrollTop-a.offsetTop-a.clientTop]},height:function(){return this.page.clientHeight},width:function(){return this.page.clientWidth}};function Viewer(a){this.config=clone_and_extend_objs(DEFAULT_CONFIG,0<arguments.length?a:{});this.pages_loading=[];this.init_before_loading_content();var b=this;document.addEventListener("DOMContentLoaded",function(){b.init_after_loading_content()},!1)}
Viewer.prototype={scale:1,cur_page_idx:0,first_page_idx:0,init_before_loading_content:function(){this.pre_hide_pages()},initialize_radio_button:function(){for(var a=document.getElementsByClassName(CSS_CLASS_NAMES.input_radio),b=0;b<a.length;b++)a[b].addEventListener("click",function(){this.classList.toggle("checked")})},init_after_loading_content:function(){this.sidebar=document.getElementById(this.config.sidebar_id);this.outline=document.getElementById(this.config.outline_id);this.container=document.getElementById(this.config.container_id);
this.loading_indicator=document.getElementsByClassName(this.config.loading_indicator_cls)[0];for(var a=!0,b=this.outline.childNodes,c=0,e=b.length;c<e;++c)if("ul"===b[c].nodeName.toLowerCase()){a=!1;break}a||this.sidebar.classList.add("opened");this.find_pages();if(0!=this.pages.length){disable_dragstart(document.getElementsByClassName(CSS_CLASS_NAMES.background_image));this.config.key_handler&&this.register_key_handler();var h=this;this.config.hashchange_handler&&window.addEventListener("hashchange",
function(a){h.navigate_to_dest(document.location.hash.substring(1))},!1);this.config.view_history_handler&&window.addEventListener("popstate",function(a){a.state&&h.navigate_to_dest(a.state)},!1);this.container.addEventListener("scroll",function(){h.update_page_idx();h.schedule_render(!0)},!1);[this.container,this.outline].forEach(function(a){a.addEventListener("click",h.link_handler.bind(h),!1)});this.initialize_radio_button();this.render()}},find_pages:function(){for(var a=[],b={},c=this.container.childNodes,
e=0,h=c.length;e<h;++e){var d=c[e];d.nodeType===Node.ELEMENT_NODE&&d.classList.contains(CSS_CLASS_NAMES.page_frame)&&(d=new Page(d),a.push(d),b[d.num]=a.length-1)}this.pages=a;this.page_map=b},load_page:function(a,b,c){var e=this.pages;if(!(a>=e.length||(e=e[a],e.loaded||this.pages_loading[a]))){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&(d=this.loading_indicator.cloneNode(!0),
d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e<h;++e){var p=b[e];if(p.nodeType===Node.ELEMENT_NODE&&p.classList.contains(CSS_CLASS_NAMES.page_frame)){d=p;break}}b=f.pages[a];f.container.replaceChild(d,b.page);b=new Page(d);f.pages[a]=b;b.hide();b.rescale(f.scale);disable_dragstart(d.getElementsByClassName(CSS_CLASS_NAMES.background_image));
f.schedule_render(!1);c&&c(b)}delete f.pages_loading[a]};g.send(null)}void 0===b&&(b=this.config.preload_pages);0<--b&&(f=this,setTimeout(function(){f.load_page(a+1,b)},0))}},pre_hide_pages:function(){var a="@media screen{."+CSS_CLASS_NAMES.page_content_box+"{display:none;}}",b=document.createElement("style");b.styleSheet?b.styleSheet.cssText=a:b.appendChild(document.createTextNode(a));document.head.appendChild(b)},render:function(){for(var a=this.container,b=a.scrollTop,c=a.clientHeight,a=b-c,b=
b+c+c,c=this.pages,e=0,h=c.length;e<h;++e){var d=c[e],f=d.page,g=f.offsetTop+f.clientTop,f=g+f.clientHeight;g<=b&&f>=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1<f;){var g=h+Math.floor(f/2),f=a[g].page;f.offsetTop+f.clientTop+f.clientHeight>=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,k=0;d<b;++d){var f=a[d].page,l=f.offsetTop+f.clientTop,
f=f.clientHeight;if(l>c)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();var c=a.container,
e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-1):a.container.scrollTop-=
a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f<d;++f){var g=h[f].page;if(g.offsetTop+g.clientTop>=
c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;f<d;++f)h[f].rescale(a);b.scrollLeft+=m/e*a+g.offsetLeft+g.clientLeft-m-l;b.scrollTop+=c/e*a+g.offsetTop+g.clientTop-c-k;this.schedule_render(!0)},fit_width:function(){var a=this.cur_page_idx;this.rescale(this.container.clientWidth/this.pages[a].width(),!0);this.scroll_to(a)},fit_height:function(){var a=this.cur_page_idx;
this.rescale(this.container.clientHeight/this.pages[a].height(),!0);this.scroll_to(a)},get_containing_page:function(a){for(;a;){if(a.nodeType===Node.ELEMENT_NODE&&a.classList.contains(CSS_CLASS_NAMES.page_frame)){a=get_page_number(a);var b=this.page_map;return a in b?this.pages[b[a]]:null}a=a.parentNode}return null},link_handler:function(a){var b=a.target,c=b.getAttribute("data-dest-detail");if(c){if(this.config.view_history_handler)try{var e=this.get_current_view_hash();window.history.replaceState(e,
"","#"+e);window.history.pushState(c,"","#"+c)}catch(h){}this.navigate_to_dest(c,this.get_containing_page(b));a.preventDefault()}},navigate_to_dest:function(a,b){try{var c=JSON.parse(a)}catch(e){return}if(c instanceof Array){var h=c[0],d=this.page_map;if(h in d){for(var f=d[h],h=this.pages[f],d=2,g=c.length;d<g;++d){var k=c[d];if(null!==k&&"number"!==typeof k)return}for(;6>c.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),d=transform(g.ictm,[d[0],g.height()-d[1]]),
g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded?
c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);a.push(this.scale);return JSON.stringify(a)}};
pdf2htmlEX.Viewer=Viewer;})();
</script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar">
<div id="outline">
</div>
</div>
<div id="page-container">
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y2 ff2 fs1 fc0 sc0 ls1 ws0">SEAN I YOUNG, PhD<span class="ff3 ls0"> <span class="_ _0"></span> <span class="_ _0"></span><span class="ff4"> | <span class="ls2">About Me</span> | <span class="fc1 ls3">Curriculum Vit<span class="ls4">ae</span></span> | <span class="fc1">P<span class="ls4">ublication</span>s</span> | <span class="fc1 ls5">Google Scholar<span class="ls0"> </span></span>| <span class="fc1"> E-<span class="ls6">mail</span></span> </span></span></div><div class="t m0 x1 h4 y3 ff4 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h4 y4 ff4 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h4 y5 ff4 fs1 fc0 sc0 ls7 ws0">Page <span class="ls0">1 <span class="_ _1"> </span> <span class="_ _2"> </span></span><span class="fc1">Back to the top</span><span class="ff5 ls0"> </span></div><div class="t m0 x2 h5 y6 ff2 fs1 fc0 sc0 ls7 ws0">Biography<span class="ls0">.<span class="ff6 fs2"> </span><span class="ff4">I <span class="ls4">am</span> <span class="_ _3"></span><span class="ls8">Instructor<span class="ls0"> <span class="ls9">of <span class="lsa">Radiology</span></span> <span class="_ _3"></span><span class="ls4">at the Martinos Center<span class="lsb">, <span class="_ _3"></span>Harvard Medical </span></span></span></span></span></span></div><div class="t m0 x2 h4 y7 ff4 fs1 fc0 sc0 ls7 ws0">School<span class="ls0"> (<span class="lsc">supporte<span class="_ _3"></span>d<span class="ls0"> <span class="ls4">by</span> <span class="_ _3"></span>a <span class="_ _3"></span><span class="ls6">NIH K99/R00 <span class="_ _3"></span><span class="ls3">Career Development <span class="ls0">A<span class="ls2">ward</span>) <span class="_ _3"></span><span class="ls4">and <span class="lsa">Researc<span class="lsd">h </span></span></span></span></span></span></span></span></span></div><div class="t m0 x2 h4 y8 ff4 fs1 fc0 sc0 ls2 ws0">Affiliate<span class="ls0"> <span class="_ _0"></span></span>with<span class="ls0"> <span class="lse">the <span class="_ _0"></span>Computer <span class="_ _4"></span>Science <span class="_ _4"></span>and <span class="_ _4"></span>Artificial <span class="_ _4"></span>Intelligence <span class="_ _0"></span>Lab <span class="_ _4"></span>(CSAIL) <span class="_ _4"></span><span class="ls4">at <span class="_ _4"></span>the</span></span> </span></div><div class="t m0 x2 h4 y9 ff4 fs1 fc0 sc0 lsf ws0">Massachuset<span class="ls0">t<span class="lsc">s <span class="_ _3"></span>Institute <span class="_ _5"></span>of <span class="_ _5"></span>Technology<span class="ls0">, <span class="_ _3"></span><span class="ls2">where <span class="_ _5"></span><span class="ls0">I <span class="_ _6"></span><span class="ls4">design <span class="_ _6"></span>novel<span class="ls0"> <span class="_ _6"></span><span class="ls8">computational <span class="_ _5"></span>imaging<span class="ls0"> </span></span></span></span></span></span></span></span></span></div><div class="t m0 x2 h4 ya ff4 fs1 fc0 sc0 ls6 ws0">methods<span class="ls0"> <span class="ls10">for</span> <span class="lse">radiology<span class="lsb">. <span class="ls7">Pr<span class="_ _4"></span>eviously,</span></span></span> I <span class="ls2">was <span class="_ _4"></span>a </span>P<span class="ls9">ostdoctoral</span> S<span class="ls8">cholar</span> <span class="lsb">in the <span class="_ _4"></span>Department </span></span></div><div class="t m0 x2 h4 yb ff4 fs1 fc0 sc0 ls9 ws0">of <span class="_ _7"></span>Electrical <span class="_ _7"></span><span class="ls11">Engineering<span class="ls0">, <span class="_ _7"></span><span class="ls7">Stanford <span class="_ _7"></span>University<span class="lsb">, <span class="_ _7"></span>w<span class="lsd">here <span class="_ _7"></span></span></span></span>I <span class="_ _7"></span><span class="ls2">worked</span> <span class="_ _7"></span></span></span>on<span class="ls0"> <span class="_ _7"></span><span class="ls8">computationa<span class="ls12">l </span></span></span></div><div class="t m0 x2 h4 yc ff4 fs1 fc0 sc0 lsb ws0">imaging<span class="ls0"> <span class="ls4">and <span class="ls6">model</span></span> <span class="ls8">compression</span></span>. <span class="ls0">I <span class="lse">received <span class="ls6">my</span></span> <span class="ls7">PhD</span> </span>in <span class="ls0">e<span class="ls12">lectric<span class="ls4">al </span></span>e<span class="lsd">ngineering</span> <span class="ls10">from</span> </span></div><div class="t m0 x2 h4 yd ff4 fs1 fc0 sc0 lse ws0">the <span class="_ _6"></span><span class="ls5">University <span class="_ _6"></span>of <span class="_ _3"></span>New<span class="ls0"> <span class="_ _5"></span><span class="ls7">So<span class="_ _4"></span>uth <span class="_ _6"></span>Wales<span class="ls0">, <span class="_ _6"></span><span class="ls7">Sydney<span class="lsb">, <span class="_ _6"></span>N<span class="ls0">SW</span>, <span class="_ _6"></span>Australia.<span class="ls0"> <span class="_ _5"></span><span class="lsf">My<span class="ls0"> <span class="_ _6"></span><span class="lse">resear<span class="ls8">ch <span class="_ _6"></span><span class="ls13">exper<span class="_ _4"></span>tise<span class="ls0"> </span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 ye ff4 fs1 fc0 sc0 ls12 ws0">lie<span class="ls0">s <span class="lsb">in</span> <span class="_ _4"></span><span class="lse">the design <span class="_ _4"></span>of</span> <span class="_ _4"></span><span class="lsd">novel</span> <span class="ls6">methods</span> <span class="_ _4"></span><span class="ls10">for <span class="_ _4"></span><span class="ls8">computational <span class="lsb">imaging</span></span></span> <span class="ls4">and<span class="lsb">, <span class="_ _4"></span>in <span class="_ _4"></span>particular, <span class="ls9">3D <span class="_ _4"></span></span>image</span></span> <span class="lse">reconstruction</span> </span></div><div class="t m0 x1 h4 yf ff4 fs1 fc0 sc0 ls4 ws0">and <span class="_ _0"></span><span class="lse">related <span class="_ _0"></span>inverse <span class="_ _0"></span>problems <span class="_ _0"></span><span class="lsb">in<span class="ls0"> <span class="_ _0"></span><span class="ls6">medical <span class="_ _7"></span>imaging</span>. <span class="_ _0"></span><span class="ls8">In <span class="_ _0"></span>2018, <span class="_ _0"></span></span>I <span class="_ _0"></span></span></span>received <span class="_ _0"></span>the <span class="_ _0"></span>Australian <span class="_ _0"></span>Pattern <span class="_ _7"></span>Recognition </span></div><div class="t m0 x1 h4 y10 ff4 fs1 fc0 sc0 ls7 ws0">Society (APRS)’s best p<span class="_ _4"></span>aper award for <span class="ls6">my<span class="ls0"> <span class="ls2">work</span> <span class="ls9">on</span> “f<span class="ls4">ast optical flow extraction from c<span class="_ _4"></span>ompressed video”.</span></span></span></div><div class="t m0 x3 h6 y11 ff7 fs3 fc2 sc0 ls0 ws0">7</div><div class="t m0 x4 h4 y10 ff4 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h5 y12 ff2 fs1 fc0 sc0 ls13 ws0">Research <span class="_ _4"></span>Statement<span class="ls0">.<span class="ff6 fs2"> <span class="_ _4"></span></span><span class="ff4 ls8">I <span class="_ _4"></span>seek <span class="_ _4"></span>to <span class="_ _4"></span><span class="lsb">improve <span class="_ _4"></span><span class="lsd">healthcare<span class="ls0"> <span class="_ _4"></span><span class="ls9">outcomes <span class="_ _4"></span>by <span class="_ _4"></span><span class="ls6">mak</span></span></span></span>ing<span class="ls0"> <span class="_ _4"></span><span class="ls10">fundamental <span class="_ _4"></span>contribution</span>s <span class="lse">to <span class="_ _4"></span>the </span></span></span></span></span></div><div class="t m0 x1 h4 y13 ff4 fs1 fc0 sc0 lsc ws0">science <span class="_ _4"></span>of <span class="_ _4"></span><span class="ls8">computational <span class="_ _0"></span>radiology<span class="lsb">. <span class="_ _4"></span>Examples <span class="_ _4"></span>of <span class="_ _0"></span></span>computational <span class="_ _4"></span>radiology <span class="_ _4"></span>problems <span class="_ _0"></span>I <span class="_ _4"></span>have <span class="_ _0"></span></span>solved<span class="ls0"> <span class="_ _4"></span><span class="lsb">include </span></span></div><div class="t m0 x1 h4 y14 ff4 fs1 fc0 sc0 ls4 ws0">accurate <span class="_ _4"></span>MRI <span class="_ _0"></span><span class="ls9">of <span class="_ _4"></span><span class="ls6">mov<span class="_ _4"></span>ing <span class="_ _4"></span>sub<span class="_ _4"></span>ject<span class="ls0">s <span class="_ _4"></span><span class="ls10">from <span class="_ _0"></span>a <span class="_ _4"></span>single <span class="_ _0"></span><span class="lsf">MR <span class="_ _4"></span><span class="lsc">slice <span class="_ _0"></span>stack</span></span></span>; <span class="_ _4"></span><span class="lse">registration <span class="_ _0"></span>of <span class="_ _4"></span>medical <span class="_ _0"></span>images <span class="_ _0"></span>of <span class="_ _4"></span></span></span></span></span>different </div><div class="t m0 x1 h4 y15 ff4 fs1 fc0 sc0 ls8 ws0">contrast <span class="_ _6"></span>to <span class="_ _6"></span>deci<span class="ls0">-<span class="ls14">voxel <span class="_ _6"></span>accuracy<span class="ls0">; <span class="_ _6"></span><span class="ls4">and <span class="_ _6"></span><span class="lsc">supervised <span class="_ _6"></span><span class="lsb">image <span class="_ _6"></span><span class="lse">reconstruction<span class="ls0"> <span class="_ _6"></span><span class="ls2">with<span class="ls0"> <span class="_ _6"></span><span class="ls10">few <span class="_ _6"></span>labeled <span class="_ _6"></span><span class="lsb">imag<span class="ls13">es.<span class="ls0"> <span class="_ _6"></span><span class="ls3">Coming <span class="_ _6"></span>from </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y16 ff4 fs1 fc0 sc0 ls0 ws0">an <span class="lsb">imaging <span class="_ _4"></span>and <span class="_ _4"></span>signal processing <span class="_ _4"></span>background, I <span class="_ _4"></span>am <span class="_ _4"></span>also <span class="_ _4"></span>interested <span class="_ _4"></span>in solving <span class="_ _4"></span><span class="ls6">more <span class="_ _4"></span>general<span class="_ _4"></span> <span class="ls8">computational </span></span></span></div><div class="t m0 x1 h4 y17 ff4 fs1 fc0 sc0 lsb ws0">imaging <span class="_ _4"></span><span class="ls4">problems <span class="_ _0"></span>in <span class="_ _4"></span>hopes <span class="_ _0"></span>that <span class="_ _0"></span><span class="lse">the <span class="_ _4"></span>developed <span class="_ _0"></span>techniques <span class="_ _4"></span>will <span class="_ _0"></span>find <span class="_ _0"></span>use <span class="_ _4"></span>in <span class="_ _0"></span>radiology <span class="_ _0"></span>one <span class="_ _4"></span>day. <span class="_ _0"></span><span class="ls11">Examples <span class="_ _4"></span>of </span></span></span></div><div class="t m0 x1 h4 y18 ff4 fs1 fc0 sc0 ls8 ws0">computational imaging <span class="_ _4"></span>problems <span class="_ _4"></span>I <span class="_ _4"></span>have <span class="_ _4"></span>solved <span class="_ _4"></span>include <span class="_ _0"></span><span class="ls9">100<span class="ls0">x <span class="_ _4"></span><span class="ls10">faster motion <span class="_ _4"></span>estimation <span class="_ _4"></span><span class="ls4">using</span></span> <span class="_ _4"></span><span class="ls10">filtering</span>; <span class="_ _4"></span><span class="lsd">non</span>-</span></span></div><div class="t m0 x1 h4 y19 ff4 fs1 fc0 sc0 ls12 ws0">line<span class="ls0">-<span class="ls9">of</span>-<span class="lsc">sight surface <span class="_ _4"></span>reconstruction</span> <span class="ls4">using</span> <span class="_ _4"></span><span class="ls3">Cholesky</span>–<span class="ls15">Wie<span class="_ _4"></span>ner <span class="_ _4"></span>filterin<span class="_ _4"></span>g</span>; <span class="ls4">and</span> <span class="_ _4"></span>30x <span class="_ _4"></span><span class="lsc">smaller</span> <span class="ls8">convolutional <span class="_ _4"></span><span class="lsd">neural</span></span> </span></div><div class="t m0 x1 h4 y1a ff4 fs1 fc0 sc0 lsd ws0">networks <span class="_ _7"></span><span class="ls4">usi</span>ng <span class="_ _8"></span><span class="lse">transform <span class="_ _7"></span>quantization<span class="ls0"> <span class="_ _8"></span><span class="ls10">for <span class="_ _7"></span>real</span>-</span>time <span class="_ _7"></span>imag<span class="lsb">ing<span class="ls0">. <span class="_ _8"></span><span class="ls8">I <span class="_ _7"></span>detail <span class="_ _7"></span>some <span class="_ _8"></span>of <span class="_ _7"></span><span class="ls6">my</span></span> <span class="_ _8"></span><span class="ls2">work</span> <span class="_ _7"></span></span>in <span class="_ _8"></span>chronological </span></span></div><div class="t m0 x1 h4 y1b ff4 fs1 fc0 sc0 ls9 ws0">order<span class="ls0"> <span class="ls4">below</span> <span class="ls4">and <span class="ls8">conclude by</span></span> <span class="ls4">discuss<span class="lsb">ing</span></span> <span class="ls10">future directions</span> <span class="ls10">for</span> <span class="ls6">my</span> <span class="lse">research. </span> </span></div><div class="t m0 x1 h3 y1c ff2 fs1 fc0 sc0 ls16 ws0">PREVIOUS<span class="ls0"> <span class="_ _4"></span><span class="ls1">RESEARCH</span> </span></div><div class="t m0 x1 h5 y1d ff2 fs1 fc0 sc0 ls17 ws0">100<span class="ls0">x <span class="lsd">Faster <span class="_ _3"></span><span class="lsf">Motion<span class="ls0"> <span class="ls17">Estimation</span> <span class="_ _3"></span>(–<span class="ls17">2019)</span>.<span class="ff6 fs2"> </span><span class="ff4 lsf">My<span class="ls0"> <span class="_ _6"></span><span class="ls8">computational imaging<span class="ls0"> <span class="lse">re<span class="_ _3"></span>search <span class="ls4">began<span class="ls0"> <span class="_ _3"></span><span class="lsb">in <span class="ls2">with <span class="_ _3"></span><span class="ls6">my<span class="ls0"> <span class="ls7">PhD <span class="_ _3"></span><span class="ls2">work </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y1e ff4 fs1 fc0 sc0 ls0 ws0">o<span class="lsd">n video <span class="_ _6"></span><span class="ls8">compression<span class="lsb">, where <span class="_ _3"></span>I invest<span class="_ _3"></span>igat<span class="ls13">ed<span class="ls0"> <span class="lse">the <span class="_ _6"></span>use<span class="ls0"> <span class="ls9">of</span> <span class="lsd">high</span>-<span class="ls9">order</span> <span class="_ _6"></span><span class="ls4">parametric displacement<span class="ls0"> <span class="ls6">models</span> <span class="_ _6"></span><span class="ls10">for<span class="ls0"> <span class="ls6">more </span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y1f ff4 fs1 fc0 sc0 ls13 ws0">eff<span class="lsb">icient <span class="_ _4"></span><span class="lse">representation <span class="_ _0"></span>of <span class="_ _4"></span>video.<span class="ls0"> <span class="_ _0"></span><span class="ls8">In</span> <span class="_ _4"></span><span class="ls14">video <span class="_ _0"></span>compression, <span class="_ _4"></span>o<span class="lsd">ne <span class="_ _0"></span><span class="ls2">way <span class="_ _4"></span>to</span></span></span> <span class="_ _0"></span></span>reduce <span class="_ _4"></span><span class="ls4">data <span class="_ _0"></span></span>redundancy<span class="ls0"> <span class="_ _4"></span></span></span>is <span class="_ _0"></span>to <span class="_ _4"></span><span class="lse">transmit<span class="ls0"> </span></span></span></div><div class="t m0 x1 h4 y20 ff4 fs1 fc0 sc0 ls4 ws0">an <span class="_ _4"></span>earlier<span class="ls0"> <span class="_ _4"></span><span class="ls14">video <span class="_ _4"></span><span class="ls10">frame</span></span>, <span class="_ _0"></span><span class="ls10">followed <span class="_ _4"></span>by</span> <span class="_ _4"></span><span class="lse">the <span class="_ _4"></span></span></span>displacement<span class="ls0"> <span class="_ _0"></span></span>and <span class="_ _4"></span>difference<span class="ls0"> <span class="_ _4"></span><span class="ls10">field</span>s <span class="_ _4"></span><span class="lse">that</span> <span class="_ _0"></span><span class="ls2">warp <span class="_ _4"></span>the <span class="_ _4"></span><span class="ls13">earl<span class="_ _4"></span>ier</span></span> <span class="_ _4"></span><span class="ls10">frame <span class="_ _4"></span></span></span>and </div><div class="t m0 x1 h4 y21 ff4 fs1 fc0 sc0 lsc ws0">synthesize<span class="ls0"> <span class="ls4">a <span class="_ _3"></span>later<span class="ls0"> <span class="ls10">frame</span>—<span class="lse">the <span class="_ _3"></span><span class="lsc">same<span class="ls0"> <span class="ls4">principle</span>s <span class="_ _3"></span><span class="ls2">which<span class="ls0"> <span class="ls4">underl<span class="lsb">ie</span></span> <span class="ls8">change <span class="_ _3"></span><span class="ls4">detection<span class="ls0"> <span class="lsb">in</span> <span class="_ _3"></span><span class="ls6">medical <span class="lsb">imaging<span class="ls0">. <span class="lsf">My</span> <span class="_ _3"></span><span class="ls5">US<span class="ls0"> </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y22 ff4 fs1 fc0 sc0 ls4 ws0">paten<span class="ls0">t</span></div><div class="t m0 x5 h6 y23 ff7 fs3 fc2 sc0 ls0 ws0">3</div><div class="t m0 x6 h4 y22 ff4 fs1 fc0 sc0 ls0 ws0"> <span class="ls10">filed</span> <span class="lsb">in</span> <span class="ls9">2018 <span class="ls4">demonstrate</span></span>s <span class="lse">the <span class="ls4">utility</span></span> <span class="ls9">of <span class="lsd">high<span class="ls13">er</span></span></span>-<span class="_ _3"></span><span class="ls9">order<span class="ls0"> <span class="ls12">(generalization of affine)</span> <span class="ls4">displacement models</span> </span></span></div><div class="t m0 x1 h4 y24 ff4 fs1 fc0 sc0 ls10 ws0">for <span class="_ _6"></span><span class="ls14">video <span class="_ _6"></span><span class="ls8">compression<span class="ls0">, <span class="_ _3"></span><span class="ls4">accompanied <span class="_ _6"></span>by<span class="ls0"> <span class="_ _6"></span><span class="ls4">a <span class="_ _3"></span>procedure <span class="_ _6"></span><span class="lse">that<span class="ls0"> <span class="_ _3"></span><span class="ls8">can<span class="ls0"> <span class="_ _6"></span><span class="lse">recover <span class="_ _6"></span>the<span class="_ _4"></span><span class="ls0"> <span class="_ _6"></span><span class="ls14">values <span class="_ _6"></span>of <span class="_ _3"></span><span class="ls4">displacement<span class="ls0"> <span class="_ _6"></span><span class="ls4">parameter<span class="ls0">s </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y25 ff4 fs1 fc0 sc0 lse ws0">to<span class="ls0"> <span class="ls4">a <span class="lsd">high precision.</span></span> </span></div><div class="t m0 x1 h4 y26 ff4 fs1 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span><span class="ls3">Concurrently <span class="ls2">with</span></span> <span class="ls6">my</span> <span class="ls2">wor<span class="_ _4"></span>k on <span class="ls4">parametric displacement</span></span> <span class="ls13">estimation techniques<span class="_ _4"></span><span class="lsb">, </span></span>I <span class="lsb">investigated <span class="lse">the use <span class="ls9">of</span></span></span> </div><div class="t m0 x1 h4 y27 ff4 fs1 fc0 sc0 ls4 ws0">den<span class="lsc">se <span class="_ _0"></span></span>deformation<span class="ls0"> <span class="_ _7"></span><span class="ls10">field<span class="lsc">s <span class="_ _7"></span>to <span class="_ _7"></span><span class="lsb">improve</span></span></span> <span class="_ _0"></span><span class="lse">the <span class="_ _7"></span>performance <span class="_ _7"></span>of <span class="_ _7"></span><span class="ls14">video <span class="_ _0"></span>compression</span></span> <span class="_ _7"></span><span class="lsc">systems</span>. <span class="_ _7"></span>I <span class="_ _0"></span></span>demonstrated<span class="_ _4"></span><span class="ls0"> <span class="_ _0"></span><span class="lse">that</span> </span></div><div class="t m0 x1 h4 y28 ff4 fs1 fc0 sc0 ls4 ws0">deformation estimation<span class="ls0"> </span>and many<span class="ls0"> <span class="lse">related inverse problems <span class="_ _4"></span>in imaging</span> </span>and vision<span class="ls0"> <span class="ls8">can be <span class="lsc">solved <span class="ls2">with</span></span></span> <span class="lsd">hi<span class="_ _4"></span>gh</span>-</span></div><div class="t m0 x1 h4 y29 ff4 fs1 fc0 sc0 ls4 ws0">dimensiona<span class="ls12">l <span class="_ _4"></span><span class="ls5">Gaussian <span class="_ _0"></span><span class="ls10">filtering <span class="_ _4"></span>t<span class="ls9">o <span class="_ _4"></span>obviate<span class="ls0"> <span class="_ _4"></span><span class="lse">th<span class="ls13">e <span class="_ _0"></span><span class="lsd">need <span class="_ _4"></span>for</span></span></span> <span class="_ _4"></span><span class="lsc">slow, <span class="_ _4"></span><span class="lsb">iterative <span class="_ _4"></span></span></span></span>optimiz<span class="_ _4"></span>ation <span class="_ _4"></span>procedures<span class="ls0">. <span class="_ _4"></span></span>For <span class="_ _4"></span>certain<span class="ls0"> </span></span></span></span></span></div><div class="t m0 x1 h4 y2a ff4 fs1 fc0 sc0 lse ws0">tasks, <span class="_ _4"></span>this <span class="_ _4"></span><span class="ls10">filtering<span class="ls0"> <span class="_ _4"></span></span></span>technique <span class="_ _4"></span><span class="ls4">accelerated<span class="ls0"> <span class="_ _4"></span></span>displacement <span class="_ _0"></span>estimation<span class="ls0"> <span class="_ _4"></span></span>by <span class="_ _4"></span>a <span class="_ _4"></span>factor <span class="_ _4"></span>of <span class="_ _0"></span><span class="ls9">100<span class="ls0"> <span class="_ _4"></span><span class="ls8">compared <span class="_ _4"></span>to <span class="_ _4"></span>iterative </span></span></span></span></div><div class="t m0 x1 h4 y2b ff4 fs1 fc0 sc0 ls4 ws0">approaches<span class="ls0">.</span></div><div class="t m0 x7 h6 y2c ff7 fs3 fc2 sc0 ls0 ws0">7</div><div class="t m0 x8 h4 y2b ff4 fs1 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span><span class="lsf">My</span> <span class="_ _a"> </span><span class="ls4">doctoral <span class="_ _a"> </span><span class="ls2">work <span class="_ _8"></span>resulted <span class="_ _a"> </span>in <span class="_ _8"> </span></span>a <span class="_ _a"> </span>PhD <span class="_ _8"> </span>thesis</span> <span class="_ _a"> </span><span class="ls9">on <span class="_ _8"> </span>non</span>-<span class="ls12">linear <span class="_ _a"> </span>optimization <span class="_ _8"></span>and <span class="_ _a"> </span>regular<span class="_ _3"></span>ization </span></div><div class="t m0 x1 h4 y2d ff4 fs1 fc0 sc0 lse ws0">techniques <span class="_ _3"></span>for <span class="_ _3"></span>inverse <span class="_ _3"></span>problems in <span class="_ _6"></span>imaging<span class="lsb">, <span class="_ _3"></span><span class="ls4">and<span class="ls0"> <span class="_ _3"></span><span class="ls10">four<span class="ls0"> <span class="_ _3"></span>f<span class="lsb">irst</span>-<span class="ls4">author</span> <span class="_ _3"></span><span class="lsb">journal <span class="_ _3"></span><span class="ls4">publication<span class="ls0">s</span></span></span></span></span></span></span></span></div><div class="t m0 x9 h6 y2e ff7 fs3 fc2 sc0 ls0 ws0">4<span class="fc0">,</span>6<span class="fc0">,</span>7<span class="fc0">,</span>8</div><div class="t m0 xa h4 y2d ff4 fs1 fc0 sc0 ls0 ws0"> <span class="_ _3"></span><span class="ls4">as <span class="_ _3"></span>well <span class="_ _3"></span>as <span class="lsc">sm<span class="_ _3"></span>aller<span class="ls0"> </span></span></span></div><div class="t m0 x1 h4 y2f ff4 fs1 fc0 sc0 ls8 ws0">conference<span class="ls0"> <span class="ls4">and workshop</span> </span>contributions<span class="ls0">. </span></div><div class="t m0 x1 h3 y30 ff2 fs1 fc0 sc0 lsd ws0">Fast <span class="ls6">Non<span class="ls0">-</span></span>Lin<span class="_ _3"></span>e<span class="ls0">-<span class="ls18">of</span>-<span class="ls13">Sight Surface <span class="_ _3"></span>Reconstruction<span class="ls0"> <span class="lse">(20<span class="ls17">19</span></span>).<span class="ff4"> <span class="_ _6"></span>A<span class="ls10">fter <span class="ls6">my</span></span> <span class="_ _6"></span><span class="ls7">PhD, <span class="ls0">I <span class="_ _6"></span><span class="ls6">mov<span class="_ _4"></span>ed to <span class="_ _6"></span>Stanford University<span class="ls0"> <span class="ls4">and </span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y31 ff4 fs1 fc0 sc0 ls8 ws0">continued <span class="_ _7"></span><span class="lse">to <span class="_ _7"></span>work<span class="ls0"> <span class="_ _8"></span><span class="ls9">on <span class="_ _7"></span><span class="ls13">efficient</span></span> <span class="_ _7"></span><span class="ls6">met<span class="_ _4"></span>hods</span> <span class="_ _7"></span><span class="ls10">for <span class="_ _7"></span></span></span></span>computational <span class="_ _8"></span>imaging<span class="ls0"> <span class="_ _7"></span><span class="ls4">problems.</span> <span class="_ _7"></span><span class="ls3">Collaborati<span class="_ _4"></span>ng <span class="_ _7"></span>closel<span class="_ _4"></span>y <span class="_ _7"></span><span class="ls2">with </span></span></span></div><div class="t m0 x1 h4 y32 ff4 fs1 fc0 sc0 ls5 ws0">Gordon <span class="_ _4"></span>Wetzstein<span class="_ _4"></span>, <span class="_ _4"></span><span class="ls0">I <span class="_ _4"></span><span class="ls2">worked <span class="_ _0"></span>on <span class="_ _4"></span><span class="lse">the <span class="_ _4"></span><span class="lsd">non</span></span></span>-<span class="ls12">line</span>-<span class="ls9">of</span>-<span class="lsc">sight <span class="_ _4"></span>imaging <span class="_ _4"></span></span>(<span class="ls14">“looking <span class="_ _4"></span>around <span class="_ _0"></span>the <span class="_ _4"></span>corner”</span>) <span class="_ _4"></span><span class="ls4">problem <span class="_ _4"></span>and </span></span></div><div class="t m0 x1 h4 y33 ff4 fs1 fc0 sc0 ls4 ws0">developed <span class="_ _7"></span>an <span class="_ _8"></span>efficient<span class="ls0"> <span class="_ _7"></span><span class="ls6">method</span></span></div><div class="t m0 xb h6 y34 ff7 fs3 fc2 sc0 ls0 ws0">9</div><div class="t m0 xc h4 y33 ff4 fs1 fc0 sc0 ls0 ws0"> <span class="_ _7"></span><span class="lse">that</span> <span class="_ _8"></span><span class="ls8">can <span class="_ _7"></span><span class="lse">resolve <span class="_ _7"></span>surf<span class="_ _4"></span>aces</span></span> <span class="_ _7"></span><span class="ls9">of <span class="_ _8"></span><span class="lsd">hidden <span class="_ _7"></span><span class="lsc">scene <span class="_ _7"></span></span></span>object</span>s <span class="_ _8"></span><span class="ls2">with <span class="_ _7"></span>an <span class="_ _8"></span><span class="ls4">unprecedented</span></span> </div><div class="t m0 x1 h4 y35 ff4 fs1 fc0 sc0 ls12 ws0">level<span class="ls0"> <span class="ls9">of detail</span> <span class="ls4">by recovering <span class="_ _4"></span>both albedo and surface <span class="_ _4"></span>normals, <span class="lsb">in addition to</span></span> <span class="ls4">a <span class="ls9">1000</span></span>-<span class="ls10">fo</span></span>ld<span class="ls0"> s<span class="ls4">pee</span>d-<span class="ls4">up</span> <span class="ls9">over</span> <span class="lse">the</span> </span></div><div class="t m0 x1 h4 y36 ff4 fs1 fc0 sc0 lsc ws0">stat<span class="ls0">e-<span class="ls9">of</span>-<span class="lse">the</span>-<span class="ls4">art</span> <span class="_ _3"></span><span class="ls6">methods<span class="lsb">. <span class="ls7">Similar to <span class="_ _6"></span><span class="ls6">my<span class="_ _4"></span><span class="ls0"> <span class="ls10">filter</span>-<span class="_ _3"></span><span class="ls4">based<span class="ls0"> <span class="ls6">motion estimation <span class="_ _3"></span><span class="ls4">approach, <span class="ls8">I <span class="_ _3"></span>formulate <span class="lse">the <span class="_ _6"></span><span class="lsc">solution of </span></span></span></span></span></span></span></span></span></span></span></span></span></div><a class="l" href="index.html"><div class="d m1" style="border-style:none;position:absolute;left:314.117647px;bottom:1125.882353px;width:49.920000px;height:13.440000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="cv.html"><div class="d m1" style="border-style:none;position:absolute;left:415.686275px;bottom:1125.882353px;width:83.280000px;height:13.440000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="publications.html"><div class="d m1" style="border-style:none;position:absolute;left:571.372549px;bottom:1125.882353px;width:58.320000px;height:13.440000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://scholar.google.com/citations?user=6Z-RCZcAAAAJ&hl=en"><div class="d m1" style="border-style:none;position:absolute;left:686.666667px;bottom:1125.882353px;width:72.960000px;height:13.440000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="mailto:[email protected]"><div class="d m1" style="border-style:none;position:absolute;left:825.882353px;bottom:1125.882353px;width:34.080000px;height:13.440000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf1" data-dest-detail='[1,"XYZ",69.84,702.48,null]'><div class="d m1" style="border-style:none;position:absolute;left:769.411765px;bottom:58.823529px;width:71.280000px;height:12.480000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.633987,0.000000,0.000000,1.633987,0.000000,0.000000]}'></div></div>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y37 ff4 fs1 fc0 sc0 ls7 ws0">Page <span class="ls0">2 <span class="_ _1"> </span> <span class="_ _2"> </span></span><span class="fc1">Back to the top</span><span class="ff5 ls0"> </span></div><div class="t m0 x1 h4 y38 ff4 fs1 fc0 sc0 lse ws0">the underlying <span class="_ _3"></span><span class="lsb">inverse pr<span class="_ _3"></span>oblem as <span class="_ _3"></span><span class="ls10">filter<span class="lsb">ing<span class="ls0"> <span class="ls9">of <span class="_ _6"></span>the obser<span class="ls14">ve<span class="ls4">d signal<span class="ls0"> <span class="_ _3"></span><span class="ls4">and apply<span class="ls0"> <span class="_ _3"></span>“<span class="ls3">Cholesky</span>–<span class="ls15">Wiene<span class="_ _4"></span>r <span class="ls10">filtering</span></span>” <span class="_ _6"></span><span class="lse">to </span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y39 ff4 fs1 fc0 sc0 ls13 ws0">evaluate t<span class="_ _4"></span>he analytic <span class="_ _4"></span>solution <span class="_ _4"></span>in <span class="_ _4"></span>a <span class="_ _4"></span>non<span class="ls0">-<span class="lsb">iterative manner</span>. <span class="_ _4"></span><span class="ls5">This <span class="_ _4"></span>work <span class="_ _4"></span>led <span class="_ _4"></span>to <span class="_ _4"></span>a <span class="_ _4"></span>first <span class="_ _4"></span>author <span class="_ _4"></span><span class="ls4">publication</span></span></span></div><div class="t m0 xd h6 y3a ff7 fs3 fc2 sc0 ls0 ws0">9</div><div class="t m0 xe h4 y39 ff4 fs1 fc0 sc0 ls0 ws0"> <span class="lsb">in <span class="_ _4"></span>the </span></div><div class="t m0 x1 h4 y3b ff4 fs1 fc0 sc0 ls8 ws0">IEEE<span class="ls0"> <span class="ls3">CVPR <span class="ls12">(oral presentation) <span class="ls4">among other unpublished contributions.</span></span></span> </span></div><div class="t m0 x1 h3 y3c ff2 fs1 fc0 sc0 ls0 ws0">30x <span class="_ _4"></span><span class="ls13">Smaller</span> <span class="_ _0"></span><span class="lse">Convolutional <span class="_ _4"></span>Neural <span class="_ _0"></span>Networks</span> <span class="_ _0"></span><span class="lse">(2021)</span>.<span class="ff4"> <span class="_ _0"></span><span class="ls15">While <span class="_ _0"></span>a<span class="lse">t <span class="_ _0"></span>Stanford<span class="lsb">, <span class="_ _0"></span></span></span></span>I <span class="_ _0"></span><span class="ls4">also</span> <span class="_ _0"></span><span class="ls2">worked <span class="_ _0"></span>with <span class="_ _0"></span>Bernd <span class="_ _0"></span>Girod </span></span></div><div class="t m0 x1 h4 y3d ff4 fs1 fc0 sc0 lse ws0">to <span class="_ _4"></span><span class="ls4">develop<span class="ls0"> <span class="_ _0"></span><span class="ls8">compression <span class="_ _0"></span></span></span></span>techniques<span class="ls0"> <span class="_ _4"></span><span class="ls10">for <span class="_ _0"></span><span class="ls8">convolutional <span class="_ _0"></span><span class="lsd">neural <span class="_ _4"></span>networks</span></span></span></span></div><div class="t m0 xf h6 y3e ff7 fs3 fc2 sc0 ls19 ws0">10</div><div class="t m0 x10 h4 y3d ff4 fs1 fc0 sc0 ls0 ws0">. <span class="_ _4"></span><span class="ls15">With <span class="_ _0"></span>the<span class="_ _4"></span> <span class="_ _4"></span><span class="lse">rise <span class="_ _0"></span>of <span class="_ _0"></span>portable <span class="_ _0"></span>medical </span></span></div><div class="t m0 x1 h4 y3f ff4 fs1 fc0 sc0 lsb ws0">imaging <span class="_ _6"></span><span class="ls4">devi<span class="_ _4"></span>ces<span class="lsb">, <span class="_ _3"></span>n<span class="ls13">eural <span class="_ _3"></span>network compression <span class="_ _6"></span><span class="ls8">continues to <span class="_ _6"></span>be <span class="ls4">an <span class="_ _6"></span>important <span class="_ _3"></span>problem in <span class="_ _6"></span>radiology due <span class="_ _6"></span>to <span class="ls0">t<span class="lsd">he </span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y40 ff4 fs1 fc0 sc0 ls4 ws0">demand <span class="_ _3"></span>for <span class="_ _3"></span><span class="lse">real<span class="ls0">-</span>time <span class="_ _3"></span><span class="lsb">image <span class="_ _6"></span>processing <span class="ls9">on <span class="_ _6"></span><span class="ls13">embedded<span class="ls0"> <span class="lsb">im<span class="_ _3"></span>aging <span class="_ _3"></span>devices<span class="ls0">. <span class="_ _3"></span><span class="ls8">I <span class="_ _3"></span>first <span class="_ _3"></span>developed <span class="_ _6"></span>a theory <span class="_ _6"></span><span class="ls9">of rate <span class="_ _6"></span>and </span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y41 ff4 fs1 fc0 sc0 ls4 ws0">distortion <span class="_ _4"></span><span class="ls10">for <span class="ls12">linear <span class="_ _4"></span>operators<span class="ls0">, <span class="_ _4"></span><span class="lse">together <span class="_ _4"></span>with decorrelating <span class="_ _4"></span>transforms <span class="_ _4"></span>for <span class="_ _4"></span>provably <span class="_ _4"></span>optim</span></span></span></span>al<span class="ls0"> <span class="_ _4"></span><span class="lse">rate</span>–</span>distortion </div><div class="t m0 x1 h4 y42 ff4 fs1 fc0 sc0 ls4 ws0">performance<span class="lsb">. <span class="ls5">The <span class="_ _4"></span>weight <span class="_ _4"></span>tensor<span class="_ _4"></span>s were<span class="_ _4"></span> </span></span>quantized <span class="_ _4"></span>in <span class="_ _4"></span>the <span class="_ _4"></span>transform domain <span class="_ _4"></span>again <span class="_ _4"></span><span class="lsc">subject to <span class="_ _4"></span>rate<span class="ls0">–</span></span>distortion </div><div class="t m0 x1 h4 y43 ff4 fs1 fc0 sc0 ls8 ws0">constraints, <span class="ls4">and the resulting network model was optionally fine<span class="ls0">-<span class="lse">tuned, for a 3</span>0x <span class="lse">reduction in network <span class="lsc">size </span></span></span></span></div><div class="t m0 x1 h4 y44 ff4 fs1 fc0 sc0 ls4 ws0">all <span class="_ _4"></span><span class="ls2">without <span class="_ _4"></span>loss <span class="_ _0"></span>of <span class="_ _4"></span>accuracy. <span class="_ _4"></span><span class="ls5">This<span class="ls0"> <span class="_ _4"></span></span></span>wor<span class="_ _4"></span>k <span class="_ _4"></span><span class="ls12">led <span class="_ _4"></span>to<span class="ls0"> <span class="_ _4"></span><span class="ls9">one</span> <span class="_ _4"></span><span class="ls10">first</span>-</span></span></span>author <span class="_ _4"></span>publication<span class="ls0"> <span class="_ _4"></span><span class="lsb">in <span class="_ _4"></span><span class="lse">the <span class="_ _4"></span><span class="ls8">IEEE <span class="_ _4"></span>Trans <span class="_ _0"></span>Pattern <span class="_ _4"></span>Anal </span></span></span></span></div><div class="t m0 x1 h4 y45 ff4 fs1 fc0 sc0 lsf ws0">Mach Intell</div><div class="t m0 x11 h6 y46 ff7 fs3 fc2 sc0 ls19 ws0">10</div><div class="t m0 x12 h4 y45 ff4 fs1 fc0 sc0 ls0 ws0"> <span class="ls4">among other conference publications.</span> </div><div class="t m0 x1 h3 y47 ff2 fs1 fc0 sc0 lsd ws0">Few<span class="ls0">-<span class="ls13">Shot <span class="_ _4"></span>Supervised <span class="_ _0"></span>Image <span class="_ _4"></span>Rec<span class="_ _4"></span>onstruction</span> <span class="_ _4"></span><span class="lse">(202</span>2).<span class="ff8"> <span class="_ _0"></span><span class="ff4">I<span class="lsd">n <span class="_ _4"></span><span class="lse">the <span class="_ _0"></span>wake <span class="_ _0"></span>of</span></span> <span class="_ _4"></span><span class="lse">the <span class="_ _0"></span><span class="ls3">COVID</span></span>-<span class="ls9">19</span> <span class="_ _0"></span><span class="ls4">pandemic<span class="lsb">, <span class="_ _4"></span></span></span>I <span class="_ _0"></span><span class="ls4">became</span> </span></span></span></div><div class="t m0 x1 h4 y48 ff4 fs1 fc0 sc0 ls0 ws0">d<span class="ls13">etermined <span class="_ _7"></span>to <span class="_ _7"></span><span class="ls4">pursue</span></span> <span class="_ _0"></span><span class="lse">research <span class="_ _7"></span>that <span class="_ _7"></span>can <span class="_ _7"></span>touch</span> <span class="_ _7"></span><span class="ls4">people’s <span class="_ _7"></span>lives</span>. <span class="_ _7"></span>I <span class="_ _7"></span><span class="ls6">moved <span class="_ _7"></span>to <span class="_ _7"></span><span class="ls7">Boston</span></span> <span class="_ _7"></span><span class="lsb">in <span class="_ _7"></span><span class="ls12">late <span class="_ _0"></span><span class="ls9">2020 <span class="_ _7"></span>for <span class="_ _7"></span>medical </span></span></span></div><div class="t m0 x1 h4 y49 ff4 fs1 fc0 sc0 lsb ws0">imaging <span class="_ _5"></span>research <span class="_ _6"></span>in <span class="_ _6"></span>the <span class="_ _6"></span>labs <span class="_ _6"></span>of<span class="ls0"> <span class="_ _6"></span><span class="ls7">Bruce <span class="_ _6"></span>Fischl<span class="ls0"> <span class="_ _6"></span>(<span class="lsf">Martinos <span class="_ _3"></span>Center, <span class="_ _6"></span>Harvard <span class="_ _6"></span>Medic<span class="_ _4"></span>al <span class="_ _6"></span>School) <span class="_ _6"></span><span class="ls4">and <span class="_ _6"></span>Polina <span class="_ _6"></span>Golland<span class="ls0"> </span></span></span></span></span></span></div><div class="t m0 x1 h4 y4a ff4 fs1 fc0 sc0 ls0 ws0">(<span class="ls3">CSAIL<span class="lsb">, <span class="lsf">MIT)</span></span></span> <span class="lse">to</span> <span class="ls2">work <span class="ls9">on <span class="lsc">semi</span></span></span>-<span class="lsc">supervised <span class="lsb">imaging</span></span></div><div class="t m0 x13 h6 y4b ff7 fs3 fc2 sc0 ls19 ws0">11</div><div class="t m0 x14 h4 y4a ff4 fs1 fc0 sc0 lsb ws0">, <span class="ls2">which<span class="ls0"> <span class="ls4">allows</span> <span class="lsd">neural networks <span class="lse">to be trained on a mix </span></span></span></span></div><div class="t m0 x1 h4 y4c ff4 fs1 fc0 sc0 ls9 ws0">of <span class="_ _3"></span>labeled <span class="_ _3"></span>and <span class="_ _3"></span>unlabeled<span class="ls0"> <span class="_ _6"></span><span class="lsb">images<span class="ls0">—<span class="ls4">a <span class="_ _3"></span>scenario <span class="_ _3"></span>that <span class="_ _3"></span><span class="lsb">is <span class="_ _3"></span><span class="ls10">frequently <span class="_ _6"></span><span class="ls13">encountered<span class="_ _4"></span><span class="ls0"> <span class="_ _6"></span><span class="lsb">in <span class="ls6">medical<span class="ls0"> <span class="_ _6"></span><span class="lsb">imaging. <span class="_ _3"></span><span class="ls8">I <span class="_ _3"></span>formulate </span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y4d ff4 fs1 fc0 sc0 lsc ws0">semi<span class="ls0">-</span>supervis<span class="lsb">ion <span class="ls4">as <span class="lse">the <span class="ls6">machine <span class="ls12">learning equivalent of </span></span>the <span class="ls0">“</span>regularization by denoising<span class="ls0">” <span class="ls12">(R<span class="_ _3"></span>ED) <span class="ls10">formalism </span></span></span></span></span></span></div><div class="t m0 x1 h4 y4e ff4 fs1 fc0 sc0 ls4 ws0">used to solve inverse problems, and alternate<span class="ls0"> </span>denoisi<span class="_ _4"></span>ng and weight update steps <span class="ls10">for <span class="lsc">supervis<span class="lsb">ion<span class="ls0">. <span class="ls5">This work </span></span></span></span></span></div><div class="t m0 x1 h4 y4f ff4 fs1 fc0 sc0 ls12 ws0">led to <span class="ls9">one<span class="ls0"> <span class="ls10">first author publication in the IEEE Trans Pattern Anal Mach Intell</span></span></span></div><div class="t m0 x15 h6 y50 ff7 fs3 fc2 sc0 ls19 ws0">11</div><div class="t m0 x16 h4 y4f ff4 fs1 fc0 sc0 ls0 ws0"> <span class="ls4">as well as</span> <span class="ls9">other workshop </span></div><div class="t m0 x1 h4 y51 ff4 fs1 fc0 sc0 ls4 ws0">publications<span class="ls0"> <span class="ls2">with collaborators at the Uni<span class="_ _4"></span>versity of Maryland</span>. </span></div><div class="t m0 x1 h3 y52 ff2 fs1 fc0 sc0 ls13 ws0">Single<span class="ls0">-</span>Stack <span class="_ _4"></span>Slice<span class="ls0">-<span class="lse">to</span>-<span class="ls9">Volume <span class="_ _4"></span>Reconstruction</span> <span class="_ _0"></span><span class="lse">(2023)</span>.<span class="ff8"> <span class="_ _4"></span><span class="ff4">A<span class="lse">t <span class="_ _0"></span>Harvard <span class="_ _4"></span>Medical <span class="_ _4"></span>School <span class="_ _0"></span>and <span class="_ _4"></span>MIT<span class="lsb">, <span class="_ _4"></span>I <span class="_ _0"></span><span class="ls4">developed </span></span></span></span></span></span></div><div class="t m0 x1 h4 y53 ff4 fs1 fc0 sc0 ls0 ws0">a <span class="_ _4"></span><span class="ls10">fully <span class="_ _4"></span>convolutional <span class="_ _4"></span>approach <span class="_ _4"></span>to <span class="_ _0"></span>slice</span>-<span class="lse">to</span>-<span class="ls14">volume <span class="_ _4"></span>reconstruction <span class="_ _4"></span>(SVR), <span class="_ _4"></span>enabling <span class="_ _4"></span><span class="lsb">imaging <span class="_ _0"></span>of <span class="_ _4"></span>subjects <span class="_ _4"></span>with </span></span></div><div class="t m0 x1 h4 y54 ff4 fs1 fc0 sc0 ls4 ws0">uncontrollable motion (such as in <span class="_ _3"></span>the case of the fetal <span class="_ _3"></span>population)<span class="ls0"> <span class="ls10">from a single <span class="_ _3"></span>stack of MR <span class="_ _3"></span>slices<span class="ls0"> <span class="ls4">acquired </span></span></span></span></div><div class="t m0 x1 h4 y55 ff4 fs1 fc0 sc0 ls4 ws0">using e.g., HASTE <span class="_ _3"></span>or <span class="ls7">SSFSE <span class="_ _3"></span>sequences.</span></div><div class="t m0 x17 h6 y56 ff7 fs3 fc2 sc0 ls0 ws0">12</div><div class="t m0 x18 h4 y55 ff4 fs1 fc0 sc0 ls0 ws0"> <span class="ls7">Previous</span> <span class="ls7">SVR <span class="_ _3"></span><span class="ls6">methods require multiple slice stacks for accurate </span></span></div><div class="t m0 x1 h4 y57 ff4 fs1 fc0 sc0 lse ws0">reconstruction<span class="lsb">, <span class="_ _4"></span>precluding their<span class="ls0"> <span class="_ _4"></span><span class="ls4">use <span class="_ _4"></span>in <span class="_ _4"></span>applic<span class="_ _4"></span>ation</span>s <span class="_ _4"></span><span class="lsc">such <span class="_ _4"></span>as <span class="_ _4"></span>fetal <span class="_ _4"></span>fMRI</span></span>, <span class="_ _4"></span>where <span class="_ _4"></span></span>the <span class="_ _4"></span>time<span class="ls0">-<span class="lsc">sensitive nature <span class="_ _4"></span>of </span></span></div><div class="t m0 x1 h4 y58 ff4 fs1 fc0 sc0 lse ws0">the acquisiti<span class="_ _4"></span>on <span class="ls9">often <span class="_ _4"></span>prohibits <span class="_ _4"></span>the <span class="_ _4"></span>use <span class="_ _4"></span>of<span class="ls0"> <span class="ls6">mul<span class="_ _4"></span>tiple <span class="_ _4"></span>slice <span class="_ _4"></span>stacks. <span class="_ _4"></span><span class="ls5">This <span class="_ _4"></span>work <span class="_ _4"></span>led <span class="_ _4"></span>to <span class="_ _4"></span>a <span class="_ _4"></span>first <span class="_ _4"></span>author <span class="_ _4"></span>submi<span class="_ _4"></span>ssion <span class="_ _4"></span></span></span></span></span>to<span class="ls0"> </span></div><div class="t m0 x1 h4 y59 ff4 fs1 fc0 sc0 lse ws0">the IEEE CVPR<span class="ls0"> <span class="ls12">(under review)</span></span></div><div class="t m0 xc h6 y5a ff7 fs3 fc2 sc0 ls0 ws0">12</div><div class="t m0 x19 h4 y59 ff4 fs1 fc0 sc0 ls0 ws0">. </div><div class="t m0 x1 h3 y5b ff2 fs1 fc0 sc0 ls1a ws0">CURRENT RESEARCH<span class="ls0"> </span></div><div class="t m0 x1 h3 y5c ff2 fs1 fc0 sc0 ls7 ws0">Universal<span class="ls0"> <span class="_ _0"></span><span class="ls1b">Image <span class="_ _7"></span>Registration</span> <span class="_ _0"></span><span class="lse">(K99<span class="ls12">, <span class="_ _0"></span>2023</span></span>–).<span class="ff8"> <span class="_ _7"></span><span class="ff4 ls3">Certain <span class="_ _7"></span>change<span class="ls0">s <span class="_ _7"></span><span class="lsb">in <span class="_ _0"></span>human <span class="_ _0"></span><span class="ls9">organs</span></span> <span class="_ _7"></span><span class="ls4">are</span> <span class="_ _7"></span><span class="lsc">strongly <span class="_ _0"></span>predictive <span class="_ _0"></span>of </span></span></span></span></span></div><div class="t m0 x1 h4 y5d ff4 fs1 fc0 sc0 ls13 ws0">early <span class="_ _3"></span>disease processes <span class="_ _6"></span>(such as<span class="ls0"> <span class="_ _3"></span><span class="ls8">cortical<span class="ls0"> <span class="_ _3"></span><span class="ls4">atrophy <span class="_ _3"></span>in the <span class="_ _6"></span>case of <span class="_ _6"></span>Alzheimer’s Disease). <span class="_ _3"></span>However, <span class="_ _3"></span>using<span class="ls0"> <span class="ls13">existing</span> </span></span></span></span></span></div><div class="t m0 x1 h4 y5e ff4 fs1 fc0 sc0 lsb ws0">image processing <span class="lse">tool<span class="_ _4"></span>s to <span class="_ _4"></span>detect thi<span class="_ _4"></span>s anatomical <span class="_ _4"></span>change <span class="_ _4"></span>in clini<span class="_ _4"></span>cal MR <span class="_ _4"></span>scans <span class="_ _4"></span>taken across <span class="_ _4"></span>time <span class="lsd">has<span class="_ _4"></span> <span class="ls4">proven </span></span></span></div><div class="t m0 x1 h4 y5f ff4 fs1 fc0 sc0 ls4 ws0">difficult<span class="ls0"> <span class="_ _3"></span><span class="ls4">due <span class="_ _3"></span>to <span class="_ _3"></span><span class="lsd">numerous<span class="ls0"> <span class="_ _3"></span><span class="lsf">MR <span class="_ _3"></span>effects and <span class="_ _6"></span>subject<span class="_ _4"></span> <span class="_ _3"></span>motion, which <span class="_ _6"></span>can mask <span class="_ _6"></span>the<span class="_ _4"></span> <span class="_ _3"></span>anatomical change <span class="_ _6"></span>of interest </span></span></span></span></span></div><div class="t m0 x1 h4 y60 ff4 fs1 fc0 sc0 lse ws0">relevant to diagnosis and research. <span class="lsf">My K99 pr<span class="_ _4"></span>oject<span class="ls0"> <span class="ls4">aims of the proposed project <span class="_ _4"></span>are to leverage the recent </span></span></span></div><div class="t m0 x1 h4 y61 ff4 fs1 fc0 sc0 ls4 ws0">advances <span class="_ _4"></span>in <span class="_ _0"></span>deep <span class="_ _0"></span>learning <span class="_ _4"></span>to <span class="_ _0"></span>design, <span class="_ _0"></span>develop <span class="_ _0"></span>and <span class="_ _4"></span>evaluate <span class="_ _0"></span>an <span class="_ _4"></span>imaging <span class="_ _0"></span>and <span class="_ _0"></span>analysis <span class="_ _0"></span>framework <span class="_ _4"></span><span class="ls2">which<span class="ls0"> <span class="_ _0"></span><span class="ls8">can </span></span></span></div><div class="t m0 x1 h4 y62 ff4 fs1 fc0 sc0 lse ws0">resolve <span class="_ _0"></span>anatomical <span class="_ _7"></span>change<span class="ls0">s <span class="_ _7"></span><span class="ls2">with <span class="_ _7"></span>high <span class="_ _0"></span>accurac<span class="_ _4"></span>y, <span class="_ _0"></span>aidin<span class="_ _4"></span>g <span class="_ _0"></span>in <span class="_ _7"></span>the <span class="_ _7"></span>early <span class="_ _7"></span>diagnosis <span class="_ _7"></span>and <span class="_ _7"></span>intervention <span class="_ _7"></span>before <span class="_ _0"></span>th<span class="_ _4"></span>e </span></span></div><div class="t m0 x1 h4 y63 ff4 fs1 fc0 sc0 ls9 ws0">onset of dysfunction<span class="ls0"> <span class="lsb">in the case of neurological diseases, for example</span>. </span></div><div class="t m0 x1 h3 y64 ff2 fs1 fc0 sc0 ls13 ws0">Research <span class="ls2">Outlook.<span class="ff8 ls0"> <span class="_ _3"></span><span class="ff4 lsf">My<span class="ls0"> <span class="ls13">expertise in <span class="_ _3"></span>computational imaging and <span class="_ _3"></span>modeling coupled <span class="_ _3"></span>with<span class="ls0"> a <span class="lsd">newly <span class="_ _3"></span>discovered </span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y65 ff4 fs1 fc0 sc0 ls4 ws0">aptitude <span class="_ _4"></span>for <span class="_ _0"></span>deep <span class="_ _4"></span>learning <span class="_ _0"></span>in <span class="_ _4"></span>MRI <span class="_ _0"></span>makes <span class="_ _4"></span><span class="ls6">me<span class="ls0"> <span class="_ _0"></span></span></span>an <span class="_ _4"></span>extremely <span class="_ _0"></span>suitable <span class="_ _4"></span>candidate <span class="_ _0"></span><span class="ls10">for <span class="_ _4"></span>a <span class="_ _4"></span>junior <span class="_ _0"></span>faculty <span class="_ _4"></span>position<span class="ls0"> </span></span></div><div class="t m0 x1 h4 y66 ff4 fs1 fc0 sc0 lsb ws0">in <span class="_ _4"></span>radiology.<span class="ls0"> <span class="_ _0"></span><span class="lsf">My</span> <span class="_ _0"></span><span class="ls6">mentors <span class="_ _0"></span>from <span class="_ _0"></span>Harvard</span> <span class="_ _0"></span><span class="ls4">and</span> <span class="_ _0"></span><span class="lsf">MIT <span class="_ _0"></span><span class="lsd">have <span class="_ _0"></span>already</span></span> <span class="_ _4"></span><span class="ls4">prov<span class="_ _4"></span>ided</span> <span class="_ _4"></span><span class="ls4">guidance <span class="_ _0"></span>and <span class="_ _0"></span>mentoring <span class="_ _0"></span>in <span class="_ _0"></span>the </span></span></div><div class="t m0 x1 h4 y67 ff4 fs1 fc0 sc0 ls10 ws0">fields of neurology <span class="_ _3"></span>and radiology to <span class="_ _3"></span>ensure that appropr<span class="_ _3"></span>iate methods are <span class="_ _3"></span>used to address clinically <span class="_ _3"></span>relevant </div><div class="t m0 x1 h4 y68 ff4 fs1 fc0 sc0 ls4 ws0">questions. The NIH K99/R00 award <span class="lsd">has<span class="ls0"> </span>not only provide<span class="ls0">d <span class="ls6">me</span> <span class="ls2">with </span></span></span>an opportunity to work with mentors </div><div class="t m0 x1 h4 y69 ff4 fs1 fc0 sc0 ls4 ws0">and solve <span class="_ _6"></span>a problem <span class="_ _3"></span>of utmost<span class="ls0"> <span class="_ _6"></span><span class="lsb">importance but <span class="_ _6"></span><span class="lsd">has <span class="ls4">also <span class="_ _3"></span>support<span class="ls13">ed me<span class="ls0"> <span class="_ _6"></span><span class="lse">to grow <span class="_ _3"></span>as <span class="_ _3"></span>an independent <span class="_ _6"></span>researcher </span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y6a ff4 fs1 fc0 sc0 ls4 ws0">and ultimately raise the next generation of researchers to carry on <span class="_ _4"></span>our <span class="ls8">collective <span class="lsc">scientific legacy.<span class="ls0"> </span></span></span></div><div class="t m0 x1 h4 y6b ff4 fs1 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span><span class="ls5">Transitioning <span class="_ _8"></span>to</span> <span class="_ _8"></span><span class="ls10">faculty, <span class="_ _7"></span></span>I <span class="_ _8"></span><span class="ls2">will</span> <span class="_ _7"></span><span class="lsc">start <span class="_ _8"></span><span class="ls6">my</span></span> <span class="_ _7"></span><span class="ls9">own <span class="_ _8"></span><span class="lse">research <span class="_ _7"></span>lab</span></span> <span class="_ _8"></span><span class="ls10">foc<span class="ls4">use</span></span>d <span class="_ _8"></span><span class="ls9">on</span> <span class="_ _7"></span><span class="ls4">developing <span class="_ _8"></span>novel <span class="_ _7"></span>computational<span class="_ _4"></span> </span></div><div class="t m0 x1 h4 y6c ff4 fs1 fc0 sc0 lsb ws0">imaging <span class="_ _5"></span><span class="ls6">met<span class="_ _4"></span>hods <span class="_ _6"></span>for <span class="_ _6"></span>radio<span class="_ _4"></span>logy<span class="ls0">. <span class="_ _6"></span>I <span class="_ _6"></span><span class="ls2">will <span class="_ _6"></span>utilize <span class="_ _6"></span><span class="ls6">my<span class="ls0"> <span class="_ _3"></span><span class="ls13">experience<span class="ls0"> <span class="_ _6"></span><span class="ls2">with <span class="_ _6"></span>a <span class="_ _6"></span><span class="lse">range <span class="_ _6"></span>of<span class="ls0"> <span class="_ _6"></span><span class="ls8">computational <span class="_ _6"></span>imaging<span class="ls0"> <span class="_ _6"></span><span class="ls4">problems<span class="ls0"> </span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y6d ff4 fs1 fc0 sc0 ls4 ws0">and <span class="_ _4"></span>a <span class="_ _0"></span>deep <span class="_ _4"></span>understanding <span class="_ _0"></span><span class="ls9">of <span class="_ _0"></span><span class="lsc">signal <span class="_ _4"></span>processing <span class="_ _4"></span>theory <span class="_ _4"></span><span class="lse">to<span class="ls0"> <span class="_ _0"></span></span></span>spearhead <span class="_ _4"></span>the<span class="ls0"> <span class="_ _4"></span><span class="ls8">computational <span class="_ _0"></span>imaging <span class="_ _4"></span>and <span class="_ _0"></span><span class="ls14">vision</span></span> </span></span></span></div><div class="t m0 x1 h4 y6e ff4 fs1 fc0 sc0 lse ws0">research<span class="ls0"> <span class="_ _4"></span><span class="ls9">of <span class="_ _0"></span><span class="ls6">my</span></span> <span class="_ _0"></span><span class="ls10">future <span class="_ _0"></span>lab</span> <span class="_ _0"></span><span class="lsb">in <span class="_ _0"></span>the <span class="_ _4"></span>R00 <span class="_ _0"></span>phase</span>. <span class="_ _0"></span>I <span class="_ _0"></span><span class="lsc">see <span class="_ _0"></span></span></span>the <span class="_ _4"></span>increase <span class="_ _0"></span><span class="lsb">in<span class="ls0"> <span class="_ _0"></span><span class="ls4">demand <span class="_ _0"></span>for <span class="_ _0"></span><span class="ls13">engineering <span class="_ _0"></span></span>academics</span> <span class="_ _0"></span><span class="ls2">with </span></span></span></div><a class="l" href="#pf1" data-dest-detail='[1,"XYZ",69.84,702.48,null]'><div class="d m1" style="border-style:none;position:absolute;left:769.411765px;bottom:58.823529px;width:71.280000px;height:12.000000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.633987,0.000000,0.000000,1.633987,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h4 y37 ff4 fs1 fc0 sc0 ls7 ws0">Page <span class="ls0">3 <span class="_ _1"> </span> <span class="_ _2"> </span></span><span class="fc1">Back to the top</span><span class="ff5 ls0"> </span></div><div class="t m0 x1 h4 y6f ff4 fs1 fc0 sc0 ls6 ws0">medical <span class="_ _4"></span>knowled<span class="_ _4"></span>ge <span class="_ _4"></span>as <span class="_ _4"></span>an <span class="_ _0"></span>opportunity <span class="_ _4"></span>f<span class="_ _4"></span>or <span class="_ _4"></span>translational<span class="_ _4"></span> <span class="_ _4"></span>research, <span class="_ _0"></span>either <span class="_ _4"></span><span class="lsb">in<span class="ls0"> <span class="_ _4"></span>an <span class="_ _4"></span><span class="ls13">engineering <span class="_ _4"></span><span class="ls4">department</span></span> <span class="_ _4"></span><span class="ls2">with </span></span></span></div><div class="t m0 x1 h4 y70 ff4 fs1 fc0 sc0 lsc ws0">strong ties to <span class="ls4">a <span class="ls8">clinic<span class="ls0"> <span class="ls9">or a radiology departme<span class="lsd">nt having</span></span> </span></span></span>strong <span class="_ _3"></span>ties to engineering. <span class="ls5">Transition<span class="ls0"> <span class="lse">to faculty will </span></span></span></div><div class="t m0 x1 h4 y71 ff4 fs1 fc0 sc0 ls4 ws0">also <span class="_ _6"></span>allow <span class="_ _6"></span><span class="ls6">me<span class="ls0"> <span class="_ _6"></span><span class="lse">to <span class="_ _3"></span>pursue <span class="_ _6"></span><span class="ls6">my<span class="ls0"> <span class="_ _6"></span><span class="ls4">passion <span class="_ _6"></span>as <span class="_ _3"></span>an <span class="_ _6"></span>educator <span class="_ _6"></span>to <span class="_ _6"></span>motivate <span class="_ _3"></span>and <span class="_ _6"></span>inspire <span class="_ _6"></span>the <span class="_ _3"></span><span class="lsd">next<span class="ls0"> <span class="_ _6"></span><span class="ls4">generation <span class="_ _6"></span>of <span class="_ _6"></span>researchers<span class="ls0"> </span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 h4 y72 ff4 fs1 fc0 sc0 ls4 ws0">and<span class="ls0"> </span>pass on to <span class="_ _4"></span>them <span class="ls14">very <span class="ls8">carefully </span></span>distilled <span class="_ _4"></span>knowledge <span class="lsb">in hopes that they will <span class="_ _4"></span><span class="lse">take our scientific di<span class="_ _4"></span>scoveries </span></span></div><div class="t m0 x1 h4 y73 ff4 fs1 fc0 sc0 ls4 ws0">and innovations further<span class="ls0">. </span></div><div class="t m0 x1 h3 y74 ff2 fs1 fc0 sc0 ls1 ws0">REFERENCES<span class="ls0"> </span></div><div class="t m0 x1 h4 y75 ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls9">1. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_ _3"></span>I. <span class="_ _3"></span>Young, <span class="_ _3"></span>David <span class="_ _3"></span><span class="ls5">Taubman. <span class="_ _3"></span>Rate<span class="ls0">-<span class="ls4">distortion <span class="_ _3"></span>optimized <span class="_ _3"></span>optical <span class="_ _3"></span>flow <span class="_ _3"></span>estimation. <span class="_ _6"></span>Proc<span class="_ _4"></span><span class="ls0">. <span class="_ _6"></span><span class="ls8">ICIP; 2<span class="_ _3"></span>015. </span></span></span></span></span></span></span></span></div><div class="t m0 x1a h4 y76 ff4 fs1 fc0 sc0 ls4 ws0">p. 1677<span class="ls0">–<span class="ls9">1681. </span> </span></div><div class="t m0 x1 h4 yb ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls0">2</span>. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean I. <span class="_ _4"></span>Young, <span class="_ _4"></span>Reji K. <span class="_ _4"></span>Mathew, <span class="_ _4"></span>David Ta<span class="_ _4"></span>ubman. Optimi<span class="_ _4"></span>zing block</span>-<span class="ls8">coded motion <span class="_ _4"></span>parameters with </span></span></div><div class="t m0 x1a h4 y77 ff4 fs1 fc0 sc0 ls4 ws0">block<span class="ls0">-</span>partition graphs. Proc<span class="ls0">. <span class="ls8">ICIP; 2016. p. 2037</span>–<span class="ls9">2041. </span> </span></div><div class="t m0 x1 h4 y78 ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls0">3</span>. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean I. Young, Xiaoyu Xi<span class="_ _4"></span>u, Yuwen He, Rahul Vanam.<span class="_ _4"></span> Higher</span>-<span class="ls9">order motion models and graduated </span></span></div><div class="t m0 x1a h4 y79 ff4 fs1 fc0 sc0 ls6 ws0">motion parameter esti<span class="_ _4"></span>mation for video c<span class="_ _4"></span>oding. United States<span class="_ _4"></span> Patent US201762504963P; <span class="_ _4"></span>2018.<span class="ls0"> </span></div><div class="t m0 x1 h4 y7a ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls0">4</span>. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_"> </span>I. <span class="_ _c"> </span><span class="ls2">Young, <span class="_"> </span>Aous <span class="_ _c"> </span>T</span></span>. <span class="_"> </span><span class="ls6">Naman, <span class="_ _c"> </span><span class="ls7">David <span class="_"> </span><span class="ls5">Taubman.<span class="_ _4"></span> <span class="_"> </span>COGL: <span class="_ _c"> </span>Coefficient <span class="_ _c"> </span>Graph <span class="_"> </span>L<span class="_ _4"></span>aplacians <span class="_ _c"> </span>for </span></span></span></span></div><div class="t m0 x1a h4 y7b ff4 fs1 fc0 sc0 ls1c ws0">Optimized JPEG Im<span class="_ _4"></span>age Decoding. IEEE<span class="_ _4"></span> Trans Image Pro<span class="_ _4"></span>cess. 2019 Jan;<span class="_ _4"></span>28(1):343<span class="ls0">–<span class="ls9">355. </span> </span></div><div class="t m0 x1 h4 y7c ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls0">5</span>. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_ _3"></span>I. <span class="_ _3"></span>Young, Aous <span class="_ _6"></span>T. Naman, <span class="_ _3"></span>Bernd <span class="_ _3"></span>Girod, David <span class="_ _6"></span>Taubma<span class="_ _4"></span>n. <span class="_ _3"></span>Solving vision <span class="_ _6"></span>pr<span class="_ _4"></span>oblems <span class="_ _3"></span>via filtering. </span></span></div><div class="t m0 x1a h4 y7d ff4 fs1 fc0 sc0 ls7 ws0">Proc<span class="ls0">. <span class="ls8">ICCV; 2019. p. 5592</span>–<span class="ls9">5601.</span> </span></div><div class="t m0 x1 h4 y7e ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls0">6</span>. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean I. <span class="ls2">Young, Aous T. <span class="ls6">Naman, </span></span>David <span class="ls5">Taubman. Graph Laplacian regularization for robu<span class="_ _4"></span>st optical </span></span></span></div><div class="t m0 x1a h4 y7f ff4 fs1 fc0 sc0 ls10 ws0">flow estimation. IEEE Trans Image<span class="_ _3"></span> Process. 2020;29:3970<span class="ls0">–<span class="ls9">3983. </span> </span></div><div class="t m0 x1 h4 y15 ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls0">7</span>. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_ _4"></span>I. <span class="_ _0"></span>Young, <span class="_ _0"></span>Bernd <span class="_ _0"></span>Girod, <span class="_ _0"></span>David <span class="_ _0"></span>Taubman. <span class="_ _0"></span>Fast <span class="_ _0"></span>optical<span class="_ _4"></span> <span class="_ _4"></span>flow <span class="_ _0"></span>extracti<span class="_ _4"></span>on <span class="_ _4"></span>fro<span class="_ _4"></span>m <span class="_ _4"></span>compres<span class="_ _4"></span>sed <span class="_ _4"></span>vi<span class="_ _4"></span>deo. </span></span></div><div class="t m0 x1a h4 y80 ff4 fs1 fc0 sc0 ls8 ws0">IEEE Trans Image Process. 2020;29:6409<span class="ls0">–<span class="ls9">6421. </span> </span></div><div class="t m0 x1 h4 y81 ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls9">8. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean I. <span class="_ _4"></span>Young, Bernd <span class="_ _4"></span>Girod, David <span class="_ _4"></span>Taubman. Ga<span class="_ _4"></span>ussian lift<span class="_ _4"></span>ing for <span class="_ _4"></span>fast bilateral<span class="_ _4"></span> and non<span class="_ _4"></span>local means </span></span></span></div><div class="t m0 x1a h4 y82 ff4 fs1 fc0 sc0 ls10 ws0">filtering. IEEE Trans Image Proce<span class="_ _3"></span>ss. 2020;29:6082<span class="ls0">–<span class="ls9">6095. </span> </span></div><div class="t m0 x1 h4 y83 ff4 fs1 fc0 sc0 lsb ws0"> <span class="ls0">9</span>. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_ _7"></span>I.<span class="_ _4"></span> <span class="_ _8"></span><span class="ls2">Young, <span class="_ _7"></span></span>David<span class="_ _4"></span> <span class="_ _7"></span>B.<span class="_ _4"></span> <span class="_ _7"></span><span class="ls2">Li<span class="_ _4"></span>ndell, <span class="_ _8"></span></span>Bernd <span class="_ _7"></span><span class="ls5">Gi<span class="_ _4"></span>rod, <span class="_ _8"></span></span>David <span class="_ _8"></span><span class="ls5">Taubman, <span class="_ _8"></span>Gordon <span class="_ _7"></span><span class="ls15">We<span class="_ _4"></span>tzstein. <span class="_ _8"> </span>Non</span></span></span>-<span class="ls12">line</span>-<span class="ls9">of</span>-</span></div><div class="t m0 x1a h4 y84 ff4 fs1 fc0 sc0 lsc ws0">sight <span class="_ _4"></span>surface <span class="_ _4"></span>reconstruction using <span class="_ _4"></span>the <span class="_ _4"></span>directional <span class="_ _4"></span>light<span class="ls0">-<span class="ls8">cone <span class="_ _4"></span>transform. <span class="_ _4"></span>Proc</span>. <span class="_ _4"></span><span class="ls3">CVPR; <span class="_ _0"></span>2020. <span class="_ _4"></span>p. <span class="_ _0"></span>1407</span>–</span></div><div class="t m0 x1a h4 y85 ff4 fs1 fc0 sc0 ls9 ws0">1416. <span class="ls0"> </span></div><div class="t m0 x1 h4 y86 ff4 fs1 fc0 sc0 ls9 ws0">10<span class="lsb">. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_"> </span>I. <span class="_"> </span><span class="ls2">Young, <span class="_"> </span>Wang <span class="_"> </span>Z<span class="lsd">he</span></span></span></span>, <span class="_ _d"> </span><span class="ls7">David <span class="_"> </span><span class="ls5">Taubman, <span class="_"> </span></span>Bernd <span class="_"> </span><span class="ls5">Girod. <span class="_"> </span>Transform <span class="_"> </span>quantization <span class="_"> </span>for <span class="_"> </span>CNN </span></span></span></div><div class="t m0 x1a h4 y87 ff4 fs1 fc0 sc0 ls8 ws0">compression. IEEE Trans Pattern Anal Mach Intell. 2021;1<span class="ls0">–<span class="ls9">1. </span> </span></div><div class="t m0 x1 h4 y88 ff4 fs1 fc0 sc0 ls9 ws0">11<span class="lsb">. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_ _8"></span>I. <span class="_ _8"> </span>Youn<span class="_ _4"></span>g</span></span>., <span class="_ _8"></span>Adrian <span class="_ _8"></span>V. <span class="_ _8"> </span>Dalca, <span class="_ _8"> </span>Enzo <span class="_ _8"> </span>Ferrante, <span class="_ _8"> </span>Polina <span class="_ _8"> </span>Golland, <span class="_ _8"> </span>Christopher <span class="_ _8"> </span>A. <span class="_ _8"> </span>Metzler, <span class="_ _8"> </span>Bruce </span></div><div class="t m0 x1a h4 y89 ff4 fs1 fc0 sc0 ls9 ws0">Fischl, <span class="_ _4"></span>and <span class="_ _4"></span>Juan <span class="_ _4"></span>Eugenio <span class="_ _0"></span>Iglesias.<span class="ls0"> <span class="_ _4"></span><span class="ls7">Supervision <span class="_ _0"></span>by</span> <span class="_ _4"></span><span class="ls7">Denoising<span class="lsb">. <span class="_ _4"></span>IEEE <span class="_ _4"></span>Trans <span class="_ _4"></span>Pattern <span class="_ _4"></span>Anal <span class="_ _4"></span><span class="lsf">Mach <span class="_ _4"></span>Int<span class="_ _4"></span>ell. </span></span></span></span></div><div class="t m0 x1a h4 y8a ff4 fs1 fc0 sc0 ls9 ws0">202<span class="ls0">3<span class="lsb">;1</span>–</span>1. <span class="ls0"> </span></div><div class="t m0 x1 h4 y8b ff4 fs1 fc0 sc0 ls9 ws0">12<span class="lsb">. <span class="ls0"> <span class="_ _b"> </span><span class="ls7">Sean <span class="_ _e"> </span>I.</span> <span class="_ _e"> </span><span class="ls2">Young</span></span>, <span class="_ _e"> </span><span class="ls2">Yaël <span class="_ _e"> </span><span class="ls7">Balbastre, <span class="_ _e"> </span>Bruce <span class="_ _e"> </span>Fischl,<span class="_ _4"></span> <span class="_ _e"> </span>Polina <span class="_ _e"> </span>Golland, <span class="_ _e"> </span>Juan <span class="_ _e"> </span>Eugenio<span class="ls0"> <span class="_ _e"> </span><span class="ls8">Iglesias</span></span></span></span>. <span class="_ _e"> </span></span>Fully </div><div class="t m0 x1a h7 y8c ff4 fs1 fc0 sc0 ls8 ws0">convolutional slice<span class="ls0">-<span class="lse">to</span>-<span class="ls14">volume reconstruction for <span class="lsc">single</span></span>-<span class="lsc">stack<span class="_ _3"></span> MRI<span class="lsb">. <span class="ls7">Proc. CVPR<span class="ls0">; s<span class="ls4">ubmitted</span></span></span>. <span class="ff9 fs4 ls0"> </span></span></span></span></div><a class="l" href="#pf1" data-dest-detail='[1,"XYZ",69.84,702.48,null]'><div class="d m1" style="border-style:none;position:absolute;left:769.411765px;bottom:58.823529px;width:71.280000px;height:12.000000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.633987,0.000000,0.000000,1.633987,0.000000,0.000000]}'></div></div>
</div>
<div class="loading-indicator">
<img alt="" src=""/>
</div>
</body>
</html>