From 0ba504a12ce358d533bec0ad74e4c53de6b2e7e2 Mon Sep 17 00:00:00 2001 From: seabbs Date: Tue, 22 Jan 2019 22:21:40 +0000 Subject: [PATCH] updated environment handling for render and final cran checks --- R/render_country_report.R | 5 +- _pkgdown.yml | 4 ++ docs/articles/intro.html | 60 +++++++++--------- .../figure-html/plot-incidence-1.png | Bin 102259 -> 124132 bytes .../figure-html/plot-incidence-facet-1.png | Bin 99417 -> 97297 bytes .../plot-incidence-facet-free-y-1.png | Bin 174736 -> 186000 bytes .../plot-mortality-excluding-hiv-1.png | Bin 183875 -> 198278 bytes .../plot-mortality-including-hiv-1.png | Bin 174710 -> 186978 bytes .../dev/man/figure/map-tb-incidence-eur-1.png | Bin 89144 -> 230514 bytes .../man/figure/plot-tb-incidence-eur-1.png | Bin 97220 -> 286226 bytes .../figure/plot-tb-incidence-eur-per-1.png | Bin 101732 -> 299107 bytes .../dev/man/figure/plot-tb-incidence-uk-1.png | Bin 27706 -> 63149 bytes .../figure/plot-tb-incidence-uk-compare-1.png | Bin 31991 -> 69287 bytes docs/index.html | 44 ++++++------- docs/man/figure/map-tb-incidence-eur-1.png | Bin 89144 -> 230514 bytes docs/man/figure/plot-tb-incidence-eur-1.png | Bin 97220 -> 286226 bytes .../figure/plot-tb-incidence-eur-per-1.png | Bin 101732 -> 299107 bytes docs/man/figure/plot-tb-incidence-uk-1.png | Bin 27706 -> 63149 bytes .../figure/plot-tb-incidence-uk-compare-1.png | Bin 31991 -> 69287 bytes docs/reference/get_data.html | 2 +- docs/reference/get_data_dict.html | 2 +- docs/reference/get_tb_burden.html | 2 +- docs/reference/index.html | 15 +++++ docs/reference/map_tb_burden.html | 2 +- docs/reference/plot_tb_burden.html | 2 +- docs/reference/plot_tb_burden_overview.html | 8 +-- docs/reference/prepare_df_plot.html | 2 +- docs/reference/search_data_dict.html | 6 +- docs/reference/summarise_tb_burden.html | 4 +- inst/rmarkdown/country-report.Rmd | 14 ++-- 30 files changed, 99 insertions(+), 73 deletions(-) diff --git a/R/render_country_report.R b/R/render_country_report.R index 2e3ac1c..8406af0 100644 --- a/R/render_country_report.R +++ b/R/render_country_report.R @@ -60,6 +60,9 @@ render_country_report <- function(country = "United Kingdom", format = "html_doc rmarkdown::render(report, output_format = format, output_file = filename, output_dir = save_dir, - intermediates_dir = save_dir, + intermediates_dir = save_dir, + params = list("country" = country, + "interactive" = interactive), + envir = new.env(), clean = TRUE) } diff --git a/_pkgdown.yml b/_pkgdown.yml index b5dd1a7..7c847be 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -58,6 +58,10 @@ reference: desc: Launch interactive dashboards showcasing package functionality. These dashboards require the shiny package. contents: - starts_with("run_") + - title: Reports + desc: Render parameterised reports showcasing package functionality. These reports require the rmarkdown package. + contents: + - starts_with("render_") - title: Helpers contents: - search_data_dict diff --git a/docs/articles/intro.html b/docs/articles/intro.html index f63dc36..ec757d3 100644 --- a/docs/articles/intro.html +++ b/docs/articles/intro.html @@ -148,9 +148,9 @@

Get TB burden data with a single function call. This will download the data if it has never been accessed and then save a local copy to R’s temporary directory (see tempdir()). If a local copy exists from the current session then this will be loaded instead.

tb_burden <- get_tb_burden()
 #> Downloading data from: https://extranet.who.int/tme/generateCSV.asp?ds=estimates
-#> Saving data to: /tmp/Rtmp32uRUo/TB_burden.rds
+#> Saving data to: /tmp/Rtmp4PqMOA/TB_burden.rds
 #> Downloading data from: https://extranet.who.int/tme/generateCSV.asp?ds=mdr_rr_estimates
-#> Saving data to: /tmp/Rtmp32uRUo/MDR_TB.rds
+#> Saving data to: /tmp/Rtmp4PqMOA/MDR_TB.rds
 #> Joining TB burden data and MDR TB data.
 
 tb_burden
@@ -202,7 +202,7 @@ 

"e_inc_100k_lo", "e_inc_100k_hi")) #> Downloading data from: https://extranet.who.int/tme/generateCSV.asp?ds=dictionary -#> Saving data to: /tmp/Rtmp32uRUo/TB_data_dict.rds +#> Saving data to: /tmp/Rtmp4PqMOA/TB_data_dict.rds #> 4 results found for your variable search for country, e_inc_100k, e_inc_100k_lo, e_inc_100k_hi knitr::kable(vars_of_interest)

@@ -242,7 +242,7 @@

We might also want to search the variable definitions for key phrases, for example mortality.

defs_of_interest <- search_data_dict(def = c("mortality"))
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 9 results found for your definition search for mortality
 
 knitr::kable(defs_of_interest)
@@ -313,7 +313,7 @@

Finally we could both search for a known variable and for key phrases in variable definitions.

vars_defs_of_interest <- search_data_dict(var = c("country"),
                                      def = c("mortality"))
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for country
 #> 9 results found for your definition search for mortality
 
@@ -394,10 +394,10 @@ 

Mapping Global Incidence Rates

To start exploring the WHO TB data we map, the most recently available, global TB incidence rates. Mapping data can help identify spatial patterns.

getTBinR::map_tb_burden(metric = "e_inc_100k")
-#> Loading data from: /tmp/Rtmp32uRUo/TB_burden.rds
-#> Loading data from: /tmp/Rtmp32uRUo/MDR_TB.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_burden.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/MDR_TB.rds
 #> Joining TB burden data and MDR TB data.
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for e_inc_100k

@@ -407,10 +407,10 @@

To showcase how quickly we can go from no data to plotting informative graphs we quickly explore incidence rates for all countries in the WHO data.

getTBinR::plot_tb_burden_overview(metric = "e_inc_100k",
                                   interactive = FALSE)
-#> Loading data from: /tmp/Rtmp32uRUo/TB_burden.rds
-#> Loading data from: /tmp/Rtmp32uRUo/MDR_TB.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_burden.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/MDR_TB.rds
 #> Joining TB burden data and MDR TB data.
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for e_inc_100k

Another way to compare incidence rates in countries is to look at the annual percentage change. The plot below only shows countries with a maximum incidence rate above 5 per 100,000.

@@ -425,10 +425,10 @@

interactive = FALSE, annual_change = TRUE, countries = higher_burden_countries) -#> Loading data from: /tmp/Rtmp32uRUo/TB_burden.rds -#> Loading data from: /tmp/Rtmp32uRUo/MDR_TB.rds +#> Loading data from: /tmp/Rtmp4PqMOA/TB_burden.rds +#> Loading data from: /tmp/Rtmp4PqMOA/MDR_TB.rds #> Joining TB burden data and MDR TB data. -#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds +#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds #> 1 results found for your variable search for e_inc_100k

@@ -437,17 +437,17 @@

Summarising Regional and Global Incidence Rates

We might also be interested in getting a regional/global overview of TB incidence rates (Hint: Use search_data_dict to look up e_inc_100k to see what role this is playing here). See ?plot_tb_burden_summary for more ways to summarise TB metrics.

getTBinR::plot_tb_burden_summary(conf = NULL, metric_label = "e_inc_100k")
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for e_inc_100k
-#> Loading data from: /tmp/Rtmp32uRUo/TB_burden.rds
-#> Loading data from: /tmp/Rtmp32uRUo/MDR_TB.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_burden.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/MDR_TB.rds
 #> Joining TB burden data and MDR TB data.
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for e_inc_num
-#> Loading data from: /tmp/Rtmp32uRUo/TB_burden.rds
-#> Loading data from: /tmp/Rtmp32uRUo/MDR_TB.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_burden.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/MDR_TB.rds
 #> Joining TB burden data and MDR TB data.
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for e_inc_num

@@ -460,14 +460,14 @@

plot_tb_burden(tb_burden, metric = "e_inc_100k", countries = sample_countries, legend = "top") -#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds +#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds #> 1 results found for your variable search for e_inc_100k

We have faceted by country so that we can more easily see what is going on. This allows us to easily explore between country variation - depending on the sample there is likely to be alot of this.

plot_tb_burden(tb_burden, metric = "e_inc_100k",
                countries = sample_countries,
                facet = "country")
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for e_inc_100k

To explore within country variation we need to change the scale of the y axis.

@@ -475,7 +475,7 @@

countries = sample_countries, facet = "country", scales = "free_y") -#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds +#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds #> 1 results found for your variable search for e_inc_100k

We might also be interested in mortality in both HIV negative and HIV positive cases in our sample countries. We can also look at this using plot_tb_burden as follows. Note we can do this without specifying the TB burden data, the plotting function will automatically find it either locally or remotely.

@@ -483,20 +483,20 @@

countries = sample_countries, facet = "country", scales = "free_y") -#> Loading data from: /tmp/Rtmp32uRUo/TB_burden.rds -#> Loading data from: /tmp/Rtmp32uRUo/MDR_TB.rds +#> Loading data from: /tmp/Rtmp4PqMOA/TB_burden.rds +#> Loading data from: /tmp/Rtmp4PqMOA/MDR_TB.rds #> Joining TB burden data and MDR TB data. -#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds +#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds #> 1 results found for your variable search for e_mort_exc_tbhiv_100k

plot_tb_burden(metric = "e_mort_tbhiv_100k",
                countries = sample_countries,
                facet = "country",
                scales = "free_y")
-#> Loading data from: /tmp/Rtmp32uRUo/TB_burden.rds
-#> Loading data from: /tmp/Rtmp32uRUo/MDR_TB.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_burden.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/MDR_TB.rds
 #> Joining TB burden data and MDR TB data.
-#> Loading data from: /tmp/Rtmp32uRUo/TB_data_dict.rds
+#> Loading data from: /tmp/Rtmp4PqMOA/TB_data_dict.rds
 #> 1 results found for your variable search for e_mort_tbhiv_100k

diff --git a/docs/articles/intro_files/figure-html/plot-incidence-1.png b/docs/articles/intro_files/figure-html/plot-incidence-1.png index be8fd078767c0d6e2a1445d178fe42653959e0e6..d6284dae38ca22f250a97d82a57b6fada4777f7a 100644 GIT binary patch literal 124132 zcmeFZc{o*X*fzY0P>K*5OqEnJX37wDiO7^9GK3N#Lo$m>GL$r+$ef`}88S~HDr8Q` zm@$OR^Ly^!@Vw9W9nbrX$NT;Bz56&i+S}f1t$W?~HJsOZo%iz7P*dEtW%m{Wfw1k2 z(y4O<0;L@3A2m7tviZtYEBr@etE79AKwx`7`bYM7aQZ5Nz)3iBO8&g_tMM);eI}hk zs;Of~i*@4t&h3=CYjT!};!)5=!6dKZ&2y(sAF?u@60G`T!c)~vPis!WE#|AK`Hq6} z(Qd)Z^ce)@Nsmd6VYA5+l|7E32F#v4k3B#AetEq9>(|I*^|ddL(T3J=V+f>IL;mM8 zQh&cC5X|>5IREp0mlp;5-*4qMbKar)`)v@JQZL!xZ?6#kfBMruP21(9kBmizwyyI{ z9P)kYE^Zyq)f7lh2-DOxx|z#q(4k3B^i^3PYuZjm=++Y7`2030HQ14>K_$hV#QGuQ1LuBU0lx8zDj2n&;rP9Na)cp4r$ohJ8ZuH4Q16KB?q&0M+f=l}bB){dv?;_)NLVL2lQ z%(k%|T~b#6;RZuH@bg|w$i3x-Alvv|FKwQbmFl?8ADde&SN$_*LM`*R!Fkcjk<+|b8Y<;xrn2+&` zm4(Rwy9iZ<)2D@Lvuyjyx2IC}dfZ%Fo_nK}xP7mLhN@~^OH0e=&lYpPT5Wntf*tki zK7IKTtJ>aG=yd7G%|8QYe2g7#-LkZ_l9(MMxg0(D0?u|P%MdwBu<1Qp? zZ^ManbaYfzt$WMvL`Ft7Ha0$b^yn##Tv0>anTzi3($?qnY=lM@$_39xo$xrYE7I9h z6$87*YE~B}TDRWLU}IzBWBe`6fLGbz>76L`@Ebq!GHm;Zd-m)R6&2mI=^mZz>Qs$D zsr$^(qwJq|zmn6qUyFJ3=FOY{h94UnYuT1o_d=+mqT=M~$2J5x{a?R+Nz2F>=<9!d zb$q7H$aD19FJ=~&o+6iSc4!4gUBU0rriXk^9l+dzolNH;kx$q)k`U-w5LxQxV(*7Ra9y) zJGC!_;tC2RB_#5SlX3Gu3T}=4YEAygA;je!1fxE3Blvz`($rO;l#rt_kR7 zzHa|`HGZSKn|D`EPL8Xq>+sizW-{y_0M?JQ&Li@9&>p1 zSJJGL+u7Nvsi}p9g`GZq8Y`D*s@r*KE0=f8ATC@`SU85)uU~l6Q*bM}z1|+qKH8kP zFxIASVBqono$+7GI{QZMrPE}0Dr~+XS{@FAW8+Rg^7r@uH88;>r|7mgWo&91_vFcw zXV0FMU81cxdhwkX{h!_so7UUfS8vb!`LnvZdhXo0k*Ms(@9!;jTwL;_qKwiFi=PJv zTU%L`tS^t1mlO5OzC1s?Wy==tAS|JeaZ79KC7Mf$iq}>br@e!GeSH%q*Z%WrI!*2A6QMz{1t*9K781_ zokvDyt*_!iQCqvakweoRgF?q*=jrn5YDIN*bzR-|?(RrtxAoQh+}zxfl9IP?e<7e$ zl$VE9Rb}>Bzv(i2M*i;bx3q-!md`>R3H>^HGb1jaZ~I-i7X9mO@~S*l>Z|orsVOOo zMyo^NHX{Q1Mn*k9eyq-owP6DBa$ESlGtXD^+_^vP*P;f8hk1`2`87H^ZAiCu>sA^X zE^pS|yWu1TMb3zU0dV4;_m(U+-3 zN9)@Q-t-7cT3XEr->`N85s}#+`8R)7J&L>9UF2eFV}rFyPD(O2Gt<`Be-%V}y>po{ zqft*MH!$2ES~z5U%-}p#qfXPsE~m_ffZ^d`M&kAB*Kyf_LCQVWii*`R_diXS{XKZO zqBAp_K7aPB=sT*Ht)!;*8@WcxaXjzl@YhFs#F?0w^bHJ<9UikuB}7LHy3JcjGDq*s zGOP0s3=H)5@4(v<}Mn)SS?olDUYHDgC zm=9fW{aLk5Kp?%SNP7DNQ!}%WhzO7VN4dtfK|c&V?L?BSJpZMiWa4Bm6< z1J$lwyVh0~+FDyZVAW{`g-@S7OE)V0+WF?YjSLymLV9W{48(@lEuy%1tv%}+f(ND9 zLCc&ChPDNz8sFS-OMg{bs}q{lw*uW5H=I`wsy`RaR*CL3Z`A1@9K1Ev`{C24PoJM{ zBx~~V@nJRIXJ=<;Wmy(HKSZTAo+}$}^sM1g7QJ`p%>zBxZ~b78eEw(k$44sbP)0`a zw)N9KBwDz{)x@GLq*w(NVgwz5)})>U?Wz3X`zgXCptq%_eI?ES$;9L#RB> zBKUP?`JdF81?3dUW0#)Y55MN{fp==#k6&TS(tc~nHb*CY)iw3?i;$j>=X{Lesa0+= zGBO@We2950{QAy#hm-^h9pw&03fr1;WoD=jk+Ut$046mxGxM{Uoq?hM*RL>yq-W2x z&Yz#{a_VVhabc`@mohl;`B_X%3}Ou|Q-F`pW8t@fvaK)yr z<@(NV{w>P06P=;-=Pq8%yYl(zANvm%-n@P5>g;^>h2Wh9&39rfdv@*W%D?%*@R)AqmCrCYi}(k09P6WrQF=z z(P@oOOepw0p#K9~zcu#l@R1{t5_Yk9c@n(5ynK9h-@b`)bKhSuhC3G(7b6Cf!tB$h zPit#yo0^(zO4oAI(r(O;x8r`*sjTlfdhD>ieJ*6eS}V2M{a4H3^#mJ*(<=XET_29vS++3%}>@tf+Rvn&x({2a)e-DMV zn$aGWB^m0+3#~4LgA6M=J%@a@zC|(uT9ox%FOoB5Wn@Ga|2a6=I?L|7gYMOLn+-8f z)mV|QM0%6@C(6mKc5cqMZW-K`&#zp+pzSw%YNzCo`}p^aRFM~35qSz7C#L!;Mx!Q{ zO8`9*u?FzI!J5zq_wO$)FWcw;xLOlZ7a>K;?7Z43-*at@G&JbB1^~l~;yYTW#MYMH zoh7@-9M|z<`oP1^?=LnAsN2hjC*l!YwA1w8Bqys3zwbA?rl6p3_G~SdgtCLYV`p%}aSm~WRcf5nFJ99A1BfPxFXicwOQ*=AJ{)>FmCgfw-cixRI$(=iQ5`A-W z=088e=PiG;N|BvfUjIwc5^7W-so9I|i-3U8n z@#;QjW#s-~?X7MS!I6<_)E1J?B|BjNM~@y|ANE{-u)wpHDIy{wX7#;nEI@W`R*OjO zsn?z6lRH}f;OdsLOjhphO*?nprzpufghLi}6ci{uGz|?;@bEnF+&-Lta~NiW;Z6%& zx^O|E24|WoUH?GEF+15)YGHunJ3IVgrcS(vp7^_~P?1U~^9{F@loT(o%B4$gfY7TS zaZ+h%=|!V_yPuo6u6*?0xhnAIH1pKKyx58Im&dLx)@OgLto%{z)>c)OFq%kk_S}m! z6>d|~*wh3|SXmm5LeR4|F=;|t5GY+0K79C0v@I!IAW^|@hCLOGj7sa`_2h?R;X~4s zO0k)lPt|JMhZdK_ep;BD`#yRU{OsAx+}xnRF_TJPBtNy6!uLkh4H*_XS_4qrzI_`wbZs!yh=Tt@>$h(S@$oXwQ@!&O zof#P!@$vDhZOEDRW@Ec0Y%e!IU0z;ZT3Qk?EP9udW2RMuZ>YI|&&h|$sks~-9g)aq zHvsuD(?hlr$YjiiPJ0f#eED*=9_59AUiKjgiA6XvJUveFF}vt>rj67U!XzIh<$ba#^q6u0^gT*W4;%IQUm72PF!Tbk|JOB4YEpBcA5xcU1>J|Kj+c<$@h2fFi4&8K=3 zT)9s@Wc7J@{N|9)wmtjy?K3A=hu7U)Dz0-jEOM5oj&a)b{&hlv4?Ep-PfIlbUQtZU zo!rsNLdx%+J5t+fGK+WKMJDE*%yAl{5fl>oTvHRbX>=)7H_ONK##`X8gq3@88?8Hf z;_?deL$cX7t*Co{)%1Gx>PNOkv*Y;p9gK{}fIypmtIrLS%G)Q7Y7ypNl5@{*+Ns+@$>@CHzF~1T zi%Od0(onj6!2OJj>1qzoy=-g|FJ35lCL?vs&dpr_{+XY5MD_0AfRZQV*|RaE@aCTD zDv7Z-Z{7?qQ4)CC(5z>5J%(|+XyK9WW-n^4S*{Sc&)nP`d1);WFGI;a@Gc2z5t6rl zwIHSC<>h&Md#i-<8^8@Z-dj#jPn)=8@)AA@UJ1M(Q2ADC@Q{CIUPOd}o?gfOtt?1J z6>cQ{V%_odWA-&9?r?FNNLkOwKou(;UM@0`I~x@VEu@)Zhd$)0lt?hV0yPnjGm(<11Zlg&@at(ahY-}dkq#RG3KK(UPrZ6dKk~4Z7T%@e?;YY-3n#1ZE7ETU+O>LoGk}?${4D z=SEk-$3go`*9CK}+U>``3vqC8a6KjG%FgZENga-ab3$w6)$`WiM9;Cq8NWp4TF-=@ z?G2XbDtHqZeC1K=9N*W2+>(;BzE1X*H6eW7L0XAw(>?N)gZ7bj7)IFC1sQ(H%8hHjn5drEfiITVPMl>=DL(a}){Ve81!_2mG1qQD}m zjGatOwi0_cZQ68+^y=KntIfpB%x_RI3km^nQ<0p`q>{cW|I*9@*9eV;-(3I>FP=ZI zj4GRnJK5_W5HK2LV!>VcsjA8hQ~(wM4%P*pASsFUxc!yF8#9)E`T55y1W6$*DT!W! zyVSVC=kDFRWo2^kcrY;K<>jyx{Bb%I44lit?}(>Q&ovj)RT3W>QPj-m?Dx%_1FiQS z8Mn}BQq1j9#M_jVhkkyeBT8Wmrs6yzVo^yarK-6S_HFA4+DAo2g*eKqlLpAOx;&Qd zu=Flhc1_PY@*suy_&Nz6SYB4Bq1pjMxpKwCq+Iq|LRuQX2R*lqwyf6zeT1Q?gv5(LR+cGb zl*-Cee%6XT7FB>C9xmWk{i-B(=*oRw6z@_98%KLS zj&WT4T(z!~bSk~N9?>*PJ_Jt}Z-(L*n8(XU_N;-VUv0=QgRRIY@cgh}IdT(0=Dg+(wQmyAqRz2Di8Mz^D{}UXUm3CxQlq`tc@o_7n5=a9%ITW2#tUkJ>w`ErJ zK(&o*B5J4V-I^WIbe&X1L;*pwm{`Z-O+iVC_{$;bFe1CLM8^j*NDMq64q%sYJ!)9= zg5Jd3{5#S&xJFUSZ|8M%nkkJiZ8wM2h@arW9mSMn1^x(6dKWJ~fBsxTLShxUMORlB zbD+;JE-Nc5E&b!;$N0Rw#b@d#V(5H!>hLxe{Q2|8F`{?j&!4BEp`|V}L&$Rydjrd; zIW-#;yOvj0z*~oXJq~t5#U@~GdOGHqQX|bO2phor(WBKU%K;G({j@bSUdVcu(9h-M zQ&z4hytA=U@XOcTccb_o6&-A8U~urbq$Ez)lV=zA?p;vLV9D(@NlD3$uV48^M9%k) zWZm1>$1{IJO~UHL4$0~eXE!%SB4~PBfD-w8o8OBZPVg-~C3M5{v&dIz;wk>WKy#^# z+x(00@KVrAA3hj&=2)X_dkdB!H5D931h8IlH#mRwo*qCc_+i~_J~>acF9&{GJ`0=@`J4AzxYlLOwp%LNoXvnN1fQVefv=Q z*NzTX*p5EG6R3Y+5HT^aj*br0G%#Nz$YE9WWdH#N;{5NfPGE!ewUtYHdST(=J*A#K zjg597x%=C{5QLR3ToC2w|N7wrm#nNO{x~!=1mYKf2`~*D(3el2SVgb5pv-b7#LV|5WXImU?tSI=6K=Bj$uN+i zZt|}9Lvq`1a2Bw55wBj6xVg_=#`lgR=&)B5H5-6d+plrWXVdP zr=b?ooT%vg-rimmfp_ncQ&ByLj*iyNGTX__ynENK_}8xy4s*^0WMyTQl-!n+^8&4f z#zUmEi;0Oz|Hz1h({Fvrv$+QEZ6#iTrI$E2c-WDe9@&^cFX|iB; zYRVaD8!af1*iR!PZ&+DLo7J*~LbO3!)sE1qU^M;zqqnp&+*qD)% z!!CH)D=I4L{(VZ%zQFHs;B6@nZm?u*y-afVZz&0?mZ8soSOxd1I?Hy8HuhI ze7_SqR;AV15)0Pr;+$$|xHi8{yH~Jwps$0>>(TfZ_w-6@Z+a=VnZaV&V0S{#x{Gk` zTVJl)iO1q9C5{9F(YJHGq4qA3s5HBJYR?_zf3*OkPt(^bi>Zd$6L%0vJzf**Ml%<$ z`3}$V)2CWEyn{A$C0sQ&a@4o_>zp3yOy$b(4x0YCd5O=m$Cf9EOPwL=w&)Qrdf{@@ z5n9jBs`B;sxMu$^w@dpN7vEd93Dd@|8rQhZr*>@hV=?m?akM};qJbQIMdwR zES0_QpI&U*#0DdHs#`wBAa3NS^N|t2d?3sNbuZ6PNO`WWqWGIp25a}i_ytOG1|q0O zRv%+lGtiZ*V}6ew@f|*Fck33LjO*-EZWZvtr>XN@=Z^60-L|fOkVo@(uz; zn-Bm9^7{2_dLnv#p9RmZocKrlAQyU2U}_<~blnv;JV_#IY)ZiFb9(C+yS7$T#1$2} zqtRI(C5vV(s&^nrBXDp?F;>biGG|jd*M#Zy{ z%TXPUkI53*rMz}{UBvrPSHK49x1&vmR?HDb^WF9Acsg@a>xPMWj=)A;rl3pV$F)?Y^ zcc+}}I07Lk;eA}h^|4=2VT>Act}$&bcx|`e`awq+bQ`hp_Z~*`X4$=yo<18UZo1{* z6nfz%x;6-mdagCi&Bvsri_q!d;xe8cY4oP&4^?4wMwy+!GSRNYU*NK?n)mL5zp5wS z1DE2}*KCvok)Nsxquw(yxIaN}>8O=Q7=YJ8%iEJInf6;TfcE!So;DMv_u7(A1<;hP z)jSEuFY{E{mIs$VLwizi^n+XPHd@-sOv95WD?++=i{E$^7Ph-DJmAFf<4ed3T;+jL z|CsT}AByy{fUzZO#B{#m_}JJ#V9+Cxd&k?ekc3hE#)Xp53b@llCdCJj3`zR;AE)|Y zXl;7SwS7O0&K5%XXu?~uQ$45t%pDw%PESgPy%7ki`LsDt-Q(-KnXZ)bJ#{ahV$Wpz zak5%Yt2{Vl=Y#LzI~R=9z=-tg$q0F>T<#y z*F+!q@2_$^l;ZY)f?ZDgh2_Y4eHq;WqsgD;`Vf0GoH=T{=irj^{xn$#LY_`H=8Qp17t&fop#S0k&ZRD02;MlbsQMO*Y3D3>Ffez?$ z)UIP@zGKt3{yng1qsI|-O82=KEUJh{sPPM6`xM=*)4g-r-}XmmXFp%Rwmds}l;xj0 zb(TGIjoI~xh{$t#VWe;9Qx5z5^Hsyr8NNHEXcNMO&QOCCO2{_(=Q2S%pWe2=WM`KF zSf#D~4VjpR3s4MnAVc6kN6QT0=(QXRt(nN{Kmqevuogv$ zWZD)@a1?)uafl&<95Sxi*IVDBFv5Jjg=Ao_L<1aAQnCQ-=gFT;T_7-^wve>#l>_1g z8Og(w2)iitSkdmVyJaVS)N3tK1?xcH7!P*B64 zOsNZO>8K}~zkE~Q&|o^f!MJA+@02#y9qj5N3roQAva64A_WSqk0O}-@_qk) z?#X^d$s|KAz0D!#&!5j;g!_bsgq(1mx{RcTx)K8}diq_6;05a}fEq<*GH2mQ6(NG& z(cb*oYsN)Tl$F)h=sm4LcZ0SaIAw!Wgfx3o(Vbh4^7f{<!_m70BXCt7r~`Td3dCOYqaXyX9TN99J04TmZCob(a7h| zpW#*bE0WzJf*Vplq+IHVzh7OhigI#tN=oXft51HFuZc z6)YY!zoDe0Tthhp0RTV-q(i6*o`i;mK6`fT*s)6m4i@(Ie-L$0bc7z&-8Z2`3H)W% zRS-;X57dGh9pb1RL{^`S>}+Wu_=mfWq42$T?_PWQyVtJ=&?KC-Pfko624L1nH|&!C zP?H7+;Sv%;vAft^>;``Bn25*~*3(d~0UlurZVuI=NQ6%rKj<#rM}}cVdCa#Xeo=E_ z9nlD!y*18CkfYAPQUNcb=0U%s*$Mc`$iP76dds0k-u}rKgacfL0>Yp?SJ2`S^ zHM|U3iN}WL6HyByTt}eZk(O3^ra3Fp>11cu7jdViu5PVAKmg=5;)a>Au@K@#La1C% zv0EhIaTJ8-us7Tez`Pxk5;Cd?dB3BBVAL4*#XXDlk99Ykod(6Kc)m$>!o zIVKGTj+zDikMQtL6y-}b4ZFzD%)el0_%C`BILxvDOl`zfF9Mw{x8M zk#<3J3`Ht}6buZQmE1;%HtX^Sa^feDA|t$f6FLt2C)=}zf$HFsNJg@D{S;gW1O)2q z>jlv7W(J#W%9;Q_J8|MR)L#Him?hY9;KPT{=gz)204B(>=~1I@&$f6*YWNq@R#1Rf zlz25e>mZp+T~CUk>QUY4MzU!6g1O`)d02BIdBD~#Vd~(pm!>!p@#<=5^`Gy-9#pQV?QvgNyI&(C5DN6+!))L(noZeG)~OspQ@-&F zHfsyrOJ`h}U1^*zymUFX@wD>oSe#H^Xu*_D`Dn~_gj&FI+2xV_%lp`5H_!5k1KE(>UdXtK6{j588%D%bOqVXAJ=#Ef>c0{h zebU#}9UT~`?6XA-La=cHbOa3#QP41o2$3iB5I4%ALxL(Dhohwb_F$)<&_k%r5L~@| zd>Dvee!(M|qCwK%uP5oy>jW7MB1ehGN{;=VuI}!2Ksg(*kqv2qBufCIt@LBOfALZ{)d6x*|M-P#E}R`Sw@@;PK5BJoP3N9ZFDg0z z+#K{N)wbQI*4>z7B0l^ENtctA1v%{{GqWMIVMi{3egSJf&_huY8(ZGlDJ38 z@Zrz3wMY5*poXzQBh#!tat*4RhIlAs;Mb5DJ%^U($&=~%iA$1$7a+}&v3w7C4MGD0 z@%)7gbQ~vEo7H7$rghP~SQu|-WMF_wBJ*mEb2@MWX5Qe;nbGq5Tk#G=oCOqk#T3O* zoZSgVns^UZ8x5yF3kw^#I{N)KSFSjqYhb2MAM*TpUVeUjLc&+neUshAsn;g^xBdJd ziHH%M);yDs{s_R!$Vbo(NFb?$fx=`%pZdGI zxYIQ$)lK^xXNIT17k>qs;O%3(r5vqzrE2d|ZiQf4%6-vxc^EMBq*M{Y90}b(hV$-S zLv?jxLBTSF%)^6A#9Z3gaiVpB-Wr;fJo{eS)UTZ3%~z@RHM7RlW&Df1wV$6KNJ(TdC`*w}VKK<7aCgw>#FW&! zO$<$B#j-V<8r71v9-I<>5EwgLX9_eh19Zd4$Ox($N4Vw$iwF4_-kxlXqhdQ#2!nbpqKyhs8c;hsGjo;f$rF#-tE-1$dhw3}@7^s37YM{Ux_WJOEalCc_WYYXlO}~I z5qP59iBPO?yMcrBreTEm52-znLzbVXt?KL1Dnais(;?=Jk`0gDl)KEczcGKRTc=BZFV*gg+C&*!zsvk~W`p?p# zE*Fw?NL_@~t7Bu~A}Fyvs6gFw{lbOdvgRwJ4JO?#*KZ%~Jo(n5y3*cGY=R+Nc*38# z-~gASy_f;}im6Tr+o58HlB+dn69{a7P$5{`5OZ?>{{8oTAH9>}+~GD^|3@yHkw`A! zA<|ZSYmC`rcK75Tsji71U0pOrY^{Xh6&3AR%>V5%r3YL8}ePnD* zoKIUzYX*8*?gIzF-y(IsTk1oqLMBZ~If^M$2wh`x}eEz&; zsCsy*_a5Cch;g$F(rFy{Kx^@M>lZqv)@c-OmV91STl;Wr-)wHF$;U10EG{Qaoo7t8 zbP4PMa(*nn)V zohsgh2AW0+pN%kMR4M4NBle-a(U2`&Gaq!lLnuS{m1<#S=EQZK?1l^Pop`P_4`#?Z zUd_q@$O4!LUX)zgQBM+5Lt`_a_UN4i=csRY)ZiU+o&%=CdkS7_#+^nfgWx9Pv7C*l zTtpFBg1C0k#~2)_wt)fKD`(Y@PP20=3e>SlIw)QKMJd@qYIXmQBs$MW#NFW0hk1Et z){#ewfnVQVNQU|x(QyTvLa1r~yg{o=Ma2!(3=$~jKt&}yeOkVv-SYuB!^?A+PvN&pFf>BB8CI~yR8si*`jTtnC9>eXWv z8Q&{`E>con318h(9B%@2QWs*Je}oKtFC34CmbU0G$&ilc#@YhdesuEj^6~c0D=0X9 z>J%&~J3kTyMCO|`i-T`sVvMg`LB>OowWphJvjHm`4e=VsWo&35Nfq{PPaM5>#9T4> z<;yc0OvP8}Z?MFoa9vE#xS9V01R!=Y0Aq}dnCs}YnW@(nyDw#?rG2fe^p1Qz44wYU z@50H-JzN9_;{MYQ1w}=R9Y)WgK$s9QH8DYr5XPogTO#wCLh@ipK$b-)N`;Q2&E4iP z$=BP|zNQEBtNWU^X@5KIq=38}<~$=v+l=`@VoEl!+<$btl4R`P$e?da(X54q#c>G< zdLrr>?9oZr&nHrY>yDrNH8w`KM=S+=Fc()0I2$zqb%BnymX-$7Ws>}5(MBW+exH~a z2C1hl=p1l81H;1`=+C0e(nV1YRtdxno6v1~bh7B^9;5I_MW?8sFkK(Di=F+3jZJz? zj1amsV3i_{-}L#K+Tp-WzD-^wGb@YKYJtX*_zC9W+_rIvCrxmqb_z9zYLBp(*o|Yf zNFaYE!rSnBgUDptItn75d({~Ih2Xc)BSRS!}zM!)i9UB8@Fopi3mE#-iN1!LtZrjF9Pg+9A z#=!TYiTlXUFD5-(SX6vvK8RuDKhkV*BT=U{E#lSntQyO<49jrKIGsjph56=St(ttf znJw2vu4%`=nbh!3o7VXJlalbtx5v(l?eyU0=jTV-Mdm}&Kmf?f%^fcF8XX#%$4DC7 z^D;7^U3_YI>-@QMO|7kbXhiVwSzj$MBT`ogLe2uY&~+4H2p&XYIWz}pC_Pb+AUsT; zP;WwM4R8ozNA2v{*FQJt*rgF%p)VPkn3#YS!g?Vq<>5i~nVygpoiXtHH~Wqq9|rBQ zeG4@|5_dL0^EZ|qrmPMmS+;Sc4@%RWvg_ZRg~asP2cVG#y%v#d#o3 zmBnS*m`gr^i<*o?rky*xunB5yO(*4|-TLZMddc!zi(RgH4a;%dQv5`(v@0!yn|qpb z6jl5J65iT(-v5q1UpLgZSFQ}8#KG>BH2r*NL}l;XDP$t8wYjP8KadJ*J?7fs5GC<* z6SjbK)xRz=v|6~9(es(6kpJ;o258D3CuO`2+J=CdT3TG{Q9|BlGp-NuXMTmkgcmvn+}B?!q9j_9iYUFfSwP`G zYp=4;^u@$=q@+2-k6 zuRNQ)UpD9Jjyu_xr)im?UNf_H&~aa1bs=G_7w&gB+kGxNM8KP4|yDMLNl?9`f>cFr|KeG#f1e zfW))MA04HN%F@x*J(GBOm$b7WX(L%vK)jmT#x3nZ%nx{`SRHXR#9$==>ShAprhUa} zK}CZ&>hCwXvve7?_#6^(cK#xEh$NnUNu*vP?Y}BkO@dMY?LmjT_vWjN&YvF`9n}RB zY|(tMz>S*TPOG7P5nSEq#e-z%K*iQ;(O+Gr-88_Any+8euwM&X4pu+@?kSCe2(`&$bS@fAPw`nSHn#8;8C8z^sB z(j@(jUtr7G;X{W2`}>gLQkfV{SxHi4&ArLmsgkaR2krk z5V}z(z#keO6~)2M{=2{boWA}lnq5=uN@{+YMu3X>g@w&~Hc*;C zBLUfwI<>`o_j=lO+$?lG;KOZgZNH;5g60bee-On%UN zadGj}=g(&j!X)-#Ga~U5IxbHbiYY~A_r$%w&@i|j$s3&Zl{J-Snyt59)=Efn2g7th@&Ozr^y z-6%1Vktqf+vNSh$2YLkkhQ1%E(|*Fk6^)M!(`skgTas)o@WMi*_EJwzh=!q;1j8gH zDG5&gRS4`0`Z3rKh@jcN8S8$}?b04hMd*E?LjuYb5;f~}@%K9w@o`j^S_MJ*vQ!c}n7$8JCfCH>M z_P{MKlCl*hU`vMBE^I803JMa0kO-htR<@MHmE)C^G&|OY-HGQlHHA1iy*!zRYy{(;%b=wI_ZU0-9R;{7;Ew@Ac{Z<{^VpmT+WG-NsmpWd<|9CKi zx8^-eE%jnXY*En<>{CZKxwh7-%!>?*=ddbZv)LrX()6a>-R`KwzxGK0TfrBoxxj5$ zFY{04z4Tm_9_;IzhQ^xI!GPFbMy3nk|a0ul9r4Uy4M zWF9$s6b7Jt=8VOfni;lc<4n2h`ni}LpZoVA1GIuO0#jS$kQxTI5{Tev4*C1~DygZZ zB_-L~+3DuqFaTNt0Y`FDZEb~J|7ZHBRAuO+hGh;uQeB;OKf*TY1(*h%n z+b8K7v6Tl#0khE6&Bv`_sREe!?9ou^@$~+lPEm{E0Ua`MyUZa46_l!96^C`V_SlCJcEVrEu@?@HNng8r}8vHlKpHNW1kwqoJ7s{#6>ohZ1`I zm=`#;eZPsRW7tWDFh$aznm5KmfMZr;1zq*PrzhCWNGeD%hRqP>x%?SGDf;L4*jNKK zncT0xHC~Ahm+Gyl3+FXvKXzJ$UJThGq&Fh`eRAMvp>#-f+R?Tu!CF)x54PL?Eb z!!PuI+<%KdO=lxOiM6!Skn)2_{PbD0ncK*%a*m2+U1`7fxSsH53$I=aMM5K67yAnI z9o|6-J?_F~AN0%LZ#_;@Y<|fu2z3jXZbU?C>C;yOrOSUW!?GT>Gy zBhORy-*@}xQ7>Mp2rY=IJy?gIGUXxI1|GLCak5(eUmchgnoz(M0ws(44jw$n%NtP9 z2g};FOSlqwAn#1T9htvm8@QOV6a`5>U~UK#wks?g=wttX^0=9XREFci!WxFO z=PJ9o_4gB~C)NwwPT1iABe|I+YJY;EC>onFxOTwE!rJ5B0Pp>UX1^{SiM?lx60OV! zl=Ds_8@#6|Nz2gg;3CK+erx!CG0=yc&~3A`)qHadZ}OX}GdD*v3zWzO>JKH^wm_nz z`CKc+k($sTef+eViso{uhR+j63c?h-mX3DI`QY0sNu1LvaZ`~R=e0H3&O@JdN>^9D zgG)}Q$~K>M{9idmdmrtgzx5OUpFGXvf6g;f{?}RmV+LF-s0dBxjf{*84b`YM!7rh( zaFl4!MC=FG0%ZJ}joRTk5NcD?xxboP$n@D2cLL7=JZNg-xhscx9?VP{XoFe`t-;R3 z=9ZS{jz=3bL3Klb4JI8u$V1&%L3!dq8}y{DvaB#WTmW4LP}k7pAJE>f_h?~vXiaK* zI*)hs#z+UK=TVkz2CQrTcD@bor*~VAlmnDokPA%6MVmGX=;2vIROp|{1+1M2TD95L z_0P@xFN6G_FaxUsZVT)j7j8{%c-CEEAm8=0cHp$IF=yXXdIpX2f_KHqJM5>)^(;R| z&M2hHq{hxWf6yvT44FyxpPxQilM&zQ`gZ4g?W0OZvUit}+dr{nP@*1CruO!(JxfeG z_Ht=m$U2Ns@MUfH&33oaNV*N*XQElmpKH5UBI-LV5ppOw|9(nRG=bvpFw5jc`0EKu zUgY$D$94?@`QMLB+9K!mmpo98jQa1#DIFq^{jFR3zjKny)N_b#8b$v1g1ZF{8i{gc z@5eBXoW{8?e_v);iGTd8kBlJaMY{Ub=eGOvD&bE^f8ZqjAy1lvaph{1k`D%wxgR5+ za=OhkUsJ-g3j_HSfRQ(d>^iv;pMI9~3*mkEMK-ss-&&>z=^S4Aq=5%-H8a7N)O> za@OTXGPJz$(Vh#xZQ)EIt`M$ZA~?5_zI{@DJj2MJ7W46%bg}31x_)ct{`z_c?wr2l zIeP~cX9b+&Fiz|x7@Jvn`>-%3YibYaYuC5+6Kj86*OTr*Tqx)+MoCTfXxPyo zgDIn1*1+kb`F2wAibi%9FLDtGUVWr--}N3jL6F@>AP62k8$(5)U>3SXUmK4Tl*A#Y zQZp(4F6mW7rgT4rnfvs3^=og=m6TIX}^ILJ!f$q@l90H+tOz=KCp_lRQ)ds;(%&k82 zPG>?H{h@p+4q00Q!S?VG+)=v1LkxhL1C~=JH!yEob_$mfBxsG05jHBVmfn?5k`oBC ziWncYyaS!iDjsns$C1#m$t&RrT?NO@QLG3HPTO!u`S+G`8$1Y)8fT3bJtcqtt;EIS zCv2>e6k!@fKTMdOJZbJUM6fDJ9E}ESYV2>7U%p`drHNY(!qRzNf702S_{%(X$?WFe zN8M8xC&=Bu7_Ihkv5uS&t&2fw?2IjBp5on1kPF9xL^E7awB&u<;_b>r%|KeU-K3fP zm@IKo_g1!8OPt(0(%Lob#w8E!IlLWX-%mQ~@@uC@Kd~%c379asCl^z;8y4YX!*iauU5(s)E&-r+{LwfTEH&{z6jLA!wzFzP^Hk3{}UV;j=_j;UX@TD^8OR2Nr4;+f_V`ex= zhqBnS43xXkz{W8pa;#i-@`gom_>%Et5@wJ7ZZyW?6{B&7%Bx|2@qSxpCo)3xZqj+U zza^ifpJLxckYmF=(hFA}q1a|4Mj)Ig1%nv*XkyTG2)-O8eQ9+zTrp{?3LhIuAI~2+ zQkjabO-8Xfbk{~CKGjYlicQAS9@)8Kj#-!*Wci|He zlSNGrbK%_6B*o;P%a8MrCfSAlPPBQ^9Wny7C+;iAzjY{Pd(k6&yh-}#UAsxNZ;h59 zCqY_)4J9cJ4zuT&n4F6+_Eq`vI|Xya6+HjOBo8=9*}Es*F>Fi&I0FaV=Q693aKphZ ze+UHcO}Kb3ZUm5O+u^j!tfiz?c} zn~HP5cbY(0^gTRF$PTC_c+-(CDtG`lBjP{1-J6GWZ|-an)jw(GSX)xwzZZSwS z=52M6;kF+aHR!m$zfwzF*t)&r$WSri7%Q!01b>UEd~}{Zzs;83tdtvSiO2TsBc_L* zXW_uESYVdNk3=1I&@;FepLn&YsB>cec1-i=fszUOuSGV*+aEoSJZ?!EPi&MeOCFE% zSudipj!;XC2w4BsFFDDgr}D==q_xh?a40ur$7;w0_2p|W7ZY!hyIC;QHOke zY_n?V9qeuQpCRtatzMX&b(Ut2P^*@|^wHJL4Z9*vKiaKet^IM_vCt_txzW7ktC4|d zQeh#O6Vl6E=KAj~1g{V~Q@&{PAMD6f5}5StyJNTI*e<5CBSK-}&B;gEG&o3WkQzfy zCpVZ^Le=sJ%O@uVThut#Bo+OaExuKxWcRvmcbLvxV}tI5s0+dC3xZJ+<0xC1*H3~A zPUZk}KXS^I%J#57f<-*cT?3Bd#ijX*if{=K1j5tr`lWsC^x*MdA zO!#=0^pTHr&35?wp`D{_UUx}HHjzFt;8W}qe7X(Lp~2oHMF<|1NQGm+iHwJ-OpJSMa}veY85zFLqt zzVwzRhMk(g>3oHHilj-!L;OG=2JxZg3Rx;&u_EEuX;&%&$A!Hq2P!ssIVx?NB0Z*q zk`ksDT2)t9$56N_+7;8t%B(z1h-N#tX%#(GxJaY<>hxnz_lj-eFY3&6eJJI^u@L`_ zvbTVWvR&JThYl460a1}QXq4_Q1wlncX=!Psh8_eFrBq6!MFB-YKzaxj0coVWL2`y} z=0C@0zkBcRTi>_-|7Sh39@h|a-`9OzXCB9KjsP@^qrd`N;if- z@!~PuZ%%6Woj-td1yB+E!gpe>jG(%FMI?8Z6m9a(uG5C@JB-dGL0Ckdx)>-=4%K_;!~w0h@KZ`$D#5Ghl>q09t4_| zhm%Y-0CV&N{LHOeuXM629rou^eRa%XU4u4g5Z~(L-4N--($NiE^Sh?>-8E5lE9^qq zUGpxIAxNN-s%Kv5{-Koa4rNz&cYs-k_^{(ueG(FemH}GNsC@c3xqLJ4th@Bk&=3F; zHhn&L)p9sUoui3v$n0B$cSyR)uEh2%JYC zL*J335IB~37Q}aoE2H)=+~^fJ5fh&i|TlkDDtqD;VMk3KZV1gp3j!|(hN*mO6LaXpD7?lk7EG6;_I#l(St(f}2=(jgGc*qLI(?_@k>U8pHAf|@R~ zGiKEkziA4KOCAgu1yNA?S$oaF%!@lq_mNt5Ud}eB)}E9RB|zy&RvrD8#IB=FJ^&vJ zZxS)0A}IsNOcoex0lqil*@*DhH^D=i*FVBo2}eap#FM?x!m87imw_HN6?eeyfw!OCF(jx;j&LNEl` zpGDjtQmfk;pWD*%rM=pR_88rfi!=yu@aY-CKQsBpP$grg2pwxKaR+`dYZLo zU)lF{gn)J^k>as;g64BoPevQ|r7iETvMNeWagrmtFKM4DJvOJO{rVt`a7L*yKh5cs zq4{isvxYhuz4E*4Y^^04Mag4xT6_q!YDP*{UYK6Qt$HfOa=2t*1#{FHI#ov zrB^t2DwJ2i-aH#2qBJxrM4%VQMACV=OKH>Vu8`cIhBFOnNj_E8+1WOrq(mS;K<5FE z_4M+}hvqXtqoHB$Q+3p-!4^ljjk=%I2wM$Bx8g@`zJa_umk^Y?x3EF&zkc0^2BV&? zTn|VbHgZMFZV$TwMhE&POv>H8y`Yfx-MYxzuzF`Q9KeCF=*ZAAbt1$Gh}n6j1jatf z#x?G95hFO{YL9WG`mJ3p8XyP)lmcaCc?-CICtmBY(bGej`z%)H5#qLbT!Ik-VXA3b zetq*29heSwp)(^93YAtMxic*1AYaLIQAmq#x)n z!o$)<3y}12|0H=49`$+TYs{U9XB*v%(j;7Uz@YO%{VMoM1N6^-?8NDDv2>u-S#&n7H&IM~1 zUmir@4*fWw80@f2KuQgS9U8hh3^uYYnw2PoF|Qp`$G4E+blSEg#xX7gA#R)wTnWNf zhX1fGI^pFZ?Nm<7H%yXGw>CqDzT_$R!`o>x<_%CE70ja1M4W@hFpQ#{Fvio7u@ zhl84YVFU@96XF2G3%dOlqSL1Wi4Q<%pvv@gWIe&iNrTTtC>r+L(4eCasBjV^?lHqZ z5b226F^Gnd;FSD0Jg5PzTFo1RI#_L>aPIBsz(Hvl>bru5CE8%xl^=s?S4^jyB0Aod zrnYp{x9%Z5@#D8U!2Y4PReFyfaJRQAf-(2%bhzFLnQQpay78N5)4_|3@H%8F*sl<` zM7_75lZm7};`IDhM(k2K0xp+988GZ*88V19@O2PigI$%v6PLv*==}lI(Nn*73eKCl zlrQ7sXEnTlHk}LEkMfhB%ZTISy675^WquKD)Vp1S_gAPOLGpshKq!Y-P7-a*>7w!A zfQPp?+XJ?Wh@y?EnS&>ww{8NYFSZfLMG*$-5ftN$@6?u%sf3F@FszGOt9<+=EJYn& zrwFf|!myD(jvstv;r$O)aZCj<6_LZBSj*omi3nkYkO%P~?3Qf0>n(gp4REZWD{^AM z0hqvE!>$d$73L|BK`1Fg@W7tznnfAJZKKB^cQ3nuB}nL1pXkjE;v*nj^0>7kkTYTM#fDEPuPG z0Hr%qXax{>i)guv@R>m>@R^FPWqhn13?GP&K&fLj%PY4BA}|S=b5TIJrsk;L{Op{l zeX()`!jLUMO@f02jv|x3u}9o-6>=nku#Bk&N(B+yp!71sE2Nx?o!QKi9F! zVPF97P!`yZ3?ed`U_IGy1i+=U+#9C3A@P9-1m;XAU&h7t zY&RD7nec_c&#I1b0o*xSelG_(DN(Z`|T-{B?9r!i~tB3fk=lJ!mkM_hXDflXvs!lU4AD8 z>v!qmML=FV{eE{9AQ;8>`2Tt%Km7g}_&0bIh-YD|Xk`cK#Tigt4f`3`h-wHm}iUu!rh>)XsC}QWi0Ru0RjOWKP4Z1p3FEcKZvaHc2`O%S)CpPaPxkrObI&CrTGT9yG zRX%41mOWvHK?tyJ*hxR!b8{=|w2g?0qA`em#45Iz?Zr_ClHTrm$7+=^VU43s!)es%w?@S`V#6^`4D^N?0QutE`yRxVaDKrRLc_Wo;q+7K!zfAKaq=gm;B82sWprJH)3+A#j8fyuJ`LZb2=Vu0uFu$a5{Z6pz*I z)T*+w>bL8GmttLXAB=5i-Bl?1k)9#*W~YScAtK`V7_-7wzXbspSI0_pJc@9K%3(6o zLA4L4~{5bl>&aZ9U_9ulmtUZsS6isNr&Uv z0O)hgUQfPL#e5b)WM-?h=7hT!+8T02gyL%p6FK&qmsf%$P9F#HU?$}QIO4~Yy&xqK z1owVzB68KJ3K2m0o6{2-smfu{J05qZu%(_;fFhV`9m=fiF~d0Uk)I$Ty7@Lw(?O%- z3#;7;I~Yp{%EAFA0qF1hlvkiB%uc8x!lQtM8~3Cefrn7&#F}w*gPy+rcAE^ApgqL_ zkb_HL5f4}A?BElGKk3sRSBCoqw6DJdV8{tF>aZMt2nG{sauF1Qe5bc-nIr3gZOkf* z>TnRJ$dFMy26-5q{<3i*@)rg{3V`1kKjAKI45^O^+q<4Mguu8Z)cZu=PMTftK&3}_ zBNRa6k8n3SB731|R(hJ;54n0|ae|9SAr};KH5zK`#2VixGk}GikZ6*X_`Oi=Rs| z^M?xfb%iwV*+c-ZZ{k-VjRF18BQQ&IfVTiS44?hwQbICQprIH{SVx3^Bd&uV>@>Iw zV~#pFZEIa=NA8L~+f8k4U>J+M3iiB4y*12X(-8I)f_$8qYVf>RE%0-w2{Gs|rNMjr z@dSI5e+4n-`Up;F8NXmmy3#EYKMjqi0}dqypMxbTXW!U|AORK}+s~5DlN=8pOn%e# z%d5o;w$I@KISorDwTe$uuLDd+ISjatunP#ADbNyS`?MQTWBKc3bi?{ng@Xq##33O8 zG_i6RknX@m!Io5mpOl~cPIZ<;tQHR$bKyOHf}k#t0j-!NQ`$gQZfT@aLQv2Nkk4>{ zL?6c>p+x`1WtUXoMMb0$D8EDM10p2>Lyn~Ywwi+k3zogm;ImG4QC8M0usZUqwhRD@ z2~U3?Tf@f8>^tv>Q_s9Pc^VNnu>t;doT4NlcmZts-%~U?YQj+m3;{s*dkk0u^xjk= zaCB-_^BhU~MZyk5)OZWM4_hS^3XXsSO^6hsL-<$nc>qDcW*xmQ{Ibbb<^P)QHvc== z7v0}|at-<0*UQUGU!N&ZL+?uI(6Ssc^Z#BOxY+R_{>KCkB@5+6fZ!1-kto_h^~_GQ z7oX$FO-V)ShyLw2I_BM#7MYZKhld?R&jM&MxHt2-Mx?%p_Y82xw*nkR&w{y>1UDG` z4XEhGFnywz@U>M-LJN9kmr_y6K3?cIH+;cXP|{pmy+QOL@Vi35!4BZRo*De- zQW;*}k6*sv2rO05{KJp@pVQ*o!Rv4Via6I38)|8$yUDR_X&Px!8ICv+nMXIsv2)UnTx@F^&mQr-kuCzwX~dXWQ`>k8{NIAp#| z1>3GxYWMGAC}N|Epu?ajIsWnZbBHw!`A>1w0T+YZ8Ti8T9I8G(6%c#9pOS@hgOo25 z4=#kt7=c$ERyyj_%-kuo2>33j7lb0sA;*Jbzz`_{Ej_d%2mfTIKc3&?5pJBUX&ScoS9^#j0Mm7tCt^Xt5p24Q89lChI?ZPQdZsaUVOw`ar7$ft^`JwE+(v27kCnwphFA=tOne#+DvaRQhW&uc?M= zpk7r_S0yw|?Lz2%8R`a5;IVFb4RP8^(%8W)JbXZ=Lltm+)E8Sm;&fk{m?4A^BcvM{ zHFF&Qbt9;BzyU}Tgn0k`*rUHLf&dqC4%{C)!7L6+4O&>58>CS?aM9Nq3Oy+$ZjoS` zXAA%U3(q_R3Gnc-!xb+;7AC{km4N}MA?$)!hExBSZ&RxdU;qFe3``}!<-V}!SG>nX zFfTdeUGsGE5WNsKMA9g@3H*AZP3jpjyW4oIJXD|nnLD=I<^?==3=l-X9{NI|;G{3< z_j80uNztkiM@bJwjKJ*?uO~>tW7ZAa>mq{fDZ``PZ++m9?ly z!h;2<=ig^L&F;v5s<~==bg1t%;dwATJs$l64h@v?Tda$E>{u`ZVtqzjA!Vr5w{3 zz)>MXCH)A$fn*Azl>ac)2v|LUYK;bf3mx$sf?R~v=T8O@>T-J)+@}Xh|HwNwV zLAOFxLjxF*`w%}SjFLNxp1lx7M9D!j47dE|=hh=i;SWUeAWBKuIW)u<0wYI2XRA_h z2y~Vg7iZgjWm%tDfRXsSU0f|uq%mMBfa(Vk3}MZ#O$#g_r|3u_0fG7-2c*6~GY(*9 zq2*z36W)d7jvL;!B1G5-GlZ}#@pW((|MK20_l>wY(6Wjca1@j#M+Qk4Ggfg&LqBaO>Zo;Eu264R(>kbB*2Dq5hw`N|x zaV?+EU?sb)d6f~B&|D1mB7ffrfU(aR`5?msat&ZP32K9s&ejn2qu&FR$8xB)Xvp{3k>}Py^Wm=X`XC4a7sh3?8A=sdU@) zlIbX11i?ijLZ2L`9pGWFt%1GgHR90+3HELeT&-~ulj>b>DNMxyoYug# zm^8?l{Gq4|)+)%B&>BW4c5t(UNsR~EBAk0rMB63*G2=XlUn*)3K?16p6?imb!LTtv zJ`0>194$&!5nBpE7>C#iYSwJjA`0(^zz@DqHKQ;(2jpzuJHl)iu8`MIT|hU0XhStX z^gwz-Q8ZZHr5{W=0!hPw9QOx$5@$$QcsMhzY?}`2W#v43EU9%CcDXYfFL*r&yfawU zByTmOXt73X5VBKcIV5Rv^UNgEXP<;a74h3YeCs?bM<9XAud0&kR#8NFD>N&IfuqbX zVQEU17yLSI|H6kWyJvfRR}D`Qstx3jZk#aVLaT zC}%EOZs!~jMB6|&K!N|~g^C8U%^gO2(i+>I zDg94$qo$%YP98Bk`z*a(hqO45`GFGf0nh;<#6>&D#m65Nkpxdv@2?mZ+r{vFbT+bGh#qFZO+E6~}j1 zLcaOzH=FyLV^YvdJb z@;{Z%@0vfqHECfpZsdVi1aVxk!|==K|3j@4fcl^N_{>fi>@-ZcKpV5l1e>x=aR=&z zz+J3%^0v-V1nxJm|B#&G;=Ro6p^TjA4F6T$+;bxXV*3{ed7XU-d(k;yof+G*3)wWJ zPzkZI02PK-jktsa{%E_#6m(^vaST)r7O&yX?(Xy3JNPyS@namAzWhUPw)wOcD~G>3 zyxPpzvhjNwq6Uh?Nv&C3^Mn$8&CzB)t=vWj=mwB?A9_d|0|^f3RPx~F0hA0Zjp>`KK^eXyp5)n?3x1%v|AANPuC<3H1m#Mg%*utS!X-h;#=g zVsX@cdGtx*B+xB)I#Yyz-YG01(w-s%0tnLBx2`(b>)`BG{`>*$OKTv4u)k6Am;4Bc z2ZGY@=u`59v9ra!#q-`;15lcR&pwu-v;8MCT7G}22r65qU{=Hcg$!Mol@+I$UmG1N zv}8GFZbNGnj3}Cbj``bzBx7hvqxMr*4@JHO4T9}#6f;cL+Urb-zNq~g7jAkm3C0M9 z^GL&y0bMC3{(FQs%@w~HjauJ0@z*Y)FK4e?bnOxvbkmm>!z6AL5*s0ahe zCKbp6#$F>c?$V#{E`n{IJ}1LY(UVQEV2FirT{08On+66Ifcyqx6j5}N_Qez(o1y`7 z%%>i^L+C~VRdNBZNr$*S{zRNumJ!vHNt{o2d%PG;jX8BAsP8doY&_<~7;tA23xzbc zw#tEoQQ$#C;Oo}eqv#=r5|H;enjf(g2Eio4K$v%4AshmKb0PR_8)!~7&kR=idU<>A zLIVdBX5cFX3Cvvh0sucmH(-Ma5;+gQzDTU+!wp`=-X6abP3@QC{?${oS3E7>-szLQ zowR?(yt|u*p*~`N9W~5aYQmNyV2p`y%`~UiNNT8SxDXMg`z%`bd8F3!NZn`QtYVz$ zhu_2hbpsrKZ-AGyhFEAb=fUOEPMFntaIiPyI}u8mDbP1RRn=xPSuvv6Xwj3F!Yb5Y(>1ky(E zuopgcD#m>3)zsuG^(4JX3wrbGzY1J`xvpL<$ZW0WkjMnr<$v(s#(m#2dQlIi5w+7C z4~0sOGi>R*xjoowL^*hQfkoTpjW%Cr`L0JLA6FebrgjHs^P*O6L~G4R4@%1nN;7{v zD|8tD4M|7OMxP*B5jZb@WrQK=w7t%==%|T2Uj(lP9qW%78}u01o)oXqhowXNtk0f5 zzXlUH27vgT0}eJ|bi#+O_qeNVuV*gq_iD3*R>;27zt z;Wnh^>xtMh=s*YGsMwQV62fpYE@JKPIHfe0ls5KwoGw zs;oxL!Y*gOdDUP$kcsQ8tiZ(=R4i@qm)7!7{|ro6E-Gw1eEIREmpiEa+4?&+NV zA|`E+Wav1@GKz9mz`BT*RwQTK=dYb{7nArZD)H55tCH$NR>8o-slu)XovWofS0(DB zsn-CRNr?>H3W8y{^3W3pLLY&?!IoAC+5u zQCTIu#~dFNIt3b;fAV<#^NnMHwPF37fkx7gJ(2J7ID=YvjW^5V4#A*uTP=~m?4nB{ zAQ_K4y=2$e<*L-2a`iFzlQ3|UZ1x& zZz`*cEqHcybQjlKm-8nl{e)tM`p>9yj55LkA~V08H{Cb;+e-(N43;B3ecgr>>~ diff --git a/docs/reference/map_tb_burden.html b/docs/reference/map_tb_burden.html index 7d3c3c9..b1bd46f 100644 --- a/docs/reference/map_tb_burden.html +++ b/docs/reference/map_tb_burden.html @@ -309,7 +309,7 @@

See a

Examples

## Map raw incidence rates -map_tb_burden()
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
# NOT RUN { +map_tb_burden()
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
# NOT RUN { #' ## Map raw incidence rates map_tb_burden(year = 2014:2017, facet = "year") diff --git a/docs/reference/plot_tb_burden.html b/docs/reference/plot_tb_burden.html index 6a7cb08..1d0b27b 100644 --- a/docs/reference/plot_tb_burden.html +++ b/docs/reference/plot_tb_burden.html @@ -321,7 +321,7 @@

See a

Examples

## Get the WHO TB burden data and the data dictionary -tb_burden <- get_tb_burden()
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
dict <- get_data_dict()
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
+tb_burden <- get_tb_burden()
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
dict <- get_data_dict()
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
## Get a random sample of 9 countries sample_countries <- sample(unique(tb_burden$country), 9) diff --git a/docs/reference/plot_tb_burden_overview.html b/docs/reference/plot_tb_burden_overview.html index cdcc2b5..3ab6609 100644 --- a/docs/reference/plot_tb_burden_overview.html +++ b/docs/reference/plot_tb_burden_overview.html @@ -311,15 +311,15 @@

Examp
## Plot incidence rates over time for both the United Kingdom and Botswana plot_tb_burden_overview(countries = c("United Kingdom", "Botswana"), - compare_to_region = FALSE)
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
+ compare_to_region = FALSE)
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
## Plot percentage annual change in incidence rates. plot_tb_burden_overview(countries = c("United Kingdom", "Botswana"), - compare_to_region = FALSE, annual_change = TRUE)
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
+ compare_to_region = FALSE, annual_change = TRUE)
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
## Compare incidence rates in the UK and Botswana to incidence rates in their regions plot_tb_burden_overview(countries = c("United Kingdom", "Botswana"), - compare_to_region = TRUE)
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
+ compare_to_region = TRUE)
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
## Find variables relating to mortality in the WHO dataset -search_data_dict(def = "mortality")
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 9 results found for your definition search for mortality
#> # A tibble: 9 x 4 +search_data_dict(def = "mortality")
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 9 results found for your definition search for mortality
#> # A tibble: 9 x 4 #> variable_name dataset code_list definition #> <chr> <chr> <chr> <chr> #> 1 e_mort_100k Estimat… "" Estimated mortality of TB cases (all fo… diff --git a/docs/reference/prepare_df_plot.html b/docs/reference/prepare_df_plot.html index b9f5d39..e88fca9 100644 --- a/docs/reference/prepare_df_plot.html +++ b/docs/reference/prepare_df_plot.html @@ -279,7 +279,7 @@

See a

Examples

-prepare_df_plot(countries = "Guinea")
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
#> $df +prepare_df_plot(countries = "Guinea")
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_inc_100k
#> $df #> # A tibble: 18 x 70 #> country iso2 iso3 iso_numeric g_whoregion year e_pop_num e_inc_100k #> <fct> <chr> <chr> <int> <chr> <int> <int> <dbl> diff --git a/docs/reference/search_data_dict.html b/docs/reference/search_data_dict.html index 81d113d..137ec4e 100644 --- a/docs/reference/search_data_dict.html +++ b/docs/reference/search_data_dict.html @@ -232,12 +232,12 @@

Examp
## Search for a known variable ## Download and save the dictionary if it is not available locally -search_data_dict(var = "country")
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for country
#> # A tibble: 1 x 4 +search_data_dict(var = "country")
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for country
#> # A tibble: 1 x 4 #> variable_name dataset code_list definition #> <chr> <chr> <chr> <chr> #> 1 country Country identification "" Country or territory name
## Search for all variables mentioning mortality in their definition -search_data_dict(def = "mortality")
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 9 results found for your definition search for mortality
#> # A tibble: 9 x 4 +search_data_dict(def = "mortality")
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 9 results found for your definition search for mortality
#> # A tibble: 9 x 4 #> variable_name dataset code_list definition #> <chr> <chr> <chr> <chr> #> 1 e_mort_100k Estimat… "" Estimated mortality of TB cases (all fo… @@ -251,7 +251,7 @@

Examp #> 9 e_mort_tbhiv_100k… Estimat… "" Estimated mortality of TB cases who are…

## Search for both a known variable and for mortality being mentioned in there definition ## Duplicate entries will be omitted. -search_data_dict(var = "e_mort_exc_tbhiv_100k", def = "mortality")
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_mort_exc_tbhiv_100k
#> 9 results found for your definition search for mortality
#> # A tibble: 9 x 4 +search_data_dict(var = "e_mort_exc_tbhiv_100k", def = "mortality")
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_mort_exc_tbhiv_100k
#> 9 results found for your definition search for mortality
#> # A tibble: 9 x 4 #> variable_name dataset code_list definition #> <chr> <chr> <chr> <chr> #> 1 e_mort_exc_tbhiv_… Estimat… "" Estimated mortality of TB cases (all fo… diff --git a/docs/reference/summarise_tb_burden.html b/docs/reference/summarise_tb_burden.html index e765e36..672d31d 100644 --- a/docs/reference/summarise_tb_burden.html +++ b/docs/reference/summarise_tb_burden.html @@ -307,7 +307,7 @@

Value

Examples

## Get the most recent year of data -tb_burden <- get_tb_burden()
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
most_recent_year <- max(tb_burden$year) +tb_burden <- get_tb_burden()
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
most_recent_year <- max(tb_burden$year) ## Get summary of the e_mdr_pct_rr_new cases summarise_tb_burden(metric = "e_mdr_pct_rr_new", @@ -316,7 +316,7 @@

Examp samples = 100, compare_all_regions = TRUE, compare_to_world = TRUE, - verbose = TRUE)

#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_mdr_pct_rr_new
#> Loading data from: /tmp/RtmpG9erjR/TB_burden.rds
#> Loading data from: /tmp/RtmpG9erjR/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpG9erjR/TB_data_dict.rds
#> 1 results found for your variable search for e_mdr_pct_rr_new
#> Filtering to use only data from: 2017
#> Confidence intervals were not found using your specified conf, so defaulting to estimating + verbose = TRUE)
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_mdr_pct_rr_new
#> Loading data from: /tmp/RtmpiQhHV1/TB_burden.rds
#> Loading data from: /tmp/RtmpiQhHV1/MDR_TB.rds
#> Joining TB burden data and MDR TB data.
#> Loading data from: /tmp/RtmpiQhHV1/TB_data_dict.rds
#> 1 results found for your variable search for e_mdr_pct_rr_new
#> Filtering to use only data from: 2017
#> Confidence intervals were not found using your specified conf, so defaulting to estimating #> only based on the point estimate.
#> # A tibble: 7 x 5 #> area year e_mdr_pct_rr_new e_mdr_pct_rr_new_lo e_mdr_pct_rr_new_hi #> <fct> <int> <dbl> <dbl> <dbl> diff --git a/inst/rmarkdown/country-report.Rmd b/inst/rmarkdown/country-report.Rmd index e1ddc2e..5d36291 100644 --- a/inst/rmarkdown/country-report.Rmd +++ b/inst/rmarkdown/country-report.Rmd @@ -1,17 +1,17 @@ --- title: "Tuberculosis Report" output: html_document -params: - country: "United kingdom" +params: + country: "United Kingdom" interactive: FALSE --- -```{r setup, include=FALSE} +```{r setup, include = FALSE} knitr::opts_chunk$set(echo = FALSE, - warnings = FALSE) + warnings = FALSE, + eval = TRUE) ``` - ```{r report-setup, include = FALSE, results = "hide"} ## Load the package library(getTBinR) @@ -27,6 +27,10 @@ tb <- get_tb_burden(verbose = FALSE) ## Get the data dictionary dict <- get_data_dict(verbose = FALSE) + +##Assign parameters +country <- params$country +interactive <- params$interactive ``` ## TB incidence rates