-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpop_subclusterIMAtemplates.m
68 lines (50 loc) · 2.2 KB
/
pop_subclusterIMAtemplates.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
% subclusters IM template cluster based on location of dipoles
%
% [STUDY] = pop_subclusterIMAtemplates(STUDY,varargin);
%
% %
% Author: Johanna Wagner, Swartz Center for Computational Neuroscience, UC San Diego, 2019
% adapted from a function written by Julie Onton
%
% Example: create 2 subclusters of cluster 1 and 2
% >> [STUDY] = pop_subclusterIMAtemplates(STUDY, 'clust', [1 2], 'nclust', 2);
%
%
%
% INPUTS:
% STUDY - STUDY structure with information on stored IMA files
% clust -- [integer] culster indices to subcluster - if empty subcluster all clusters
% nclust -- [integer] will divide templates into nclust clusters
% by 'pdist','linkage','dendrogram' Matlab functions -
% default 2
% method -- ['corr', 'euc' or 'k-means'] for correlation or euclidean distance for pdist, or k-means clustering
% default 'k-means'
%
% OUTPUT
% STUDY - STUDY structure with indexes of subclusters (column 5 in matrix) and distance to subcluster
% centroid saved in STUDY.etc.IMA.clustidx in the form [SJ IM ICs clusindx subclusindx]
% and STUDY.etc.IMA.subclustdistance [ICs x Clusters]
%
function [STUDY] = pop_subclusterIMAtemplates(STUDY,varargin);
g = finputcheck(varargin, {'clust' 'integer' [] [unique(STUDY.etc.IMA.clustidx(:,4))'];...
'nclust' 'integer' [] [2];...
'method' 'string' {'corr' 'euc' 'kmeans'} 'kmeans'; ...
}, 'inputgui');
if isstr(g), error(g); end;
subjcode = STUDY.subject;
dipsources = [];
scalpmaps = [];
for iko = 1:length(subjcode)
indsj = find(ismember({STUDY.datasetinfo.subject}, STUDY(iko).subject));
%% load IMA file for curent subject
load([STUDY.datasetinfo(indsj(1)).filepath '/' STUDY.etc.IMA.imafilename(iko,:)], '-mat' );
str = string(STUDY(iko).subject);
sujnum = sscanf(str,'S%d');
dipsources = [dipsources IMA.precluster.dipsources];
end
[clustidx, subclustdistance]...
= subclusterIMAtemplates(STUDY.etc.IMA.clustidx, dipsources, 'clust', g.clust, 'nclust', g.nclust, 'method', g.method);
STUDY.etc.IMA.clustidx = clustidx;
STUDY.etc.IMA.subclustdistance = subclustdistance;
[STUDY] = pop_savestudy( STUDY, 'savemode','resave');
end