-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcollecttemplates.m
235 lines (174 loc) · 7.48 KB
/
collecttemplates.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
% collects spectral templates for clustering removing templates whose spectral amplitude are smaller than
% 1/3 of the maximum template amplitude. Templates are normalized by rms.
% Allows to select templates that are active/ have peaks in a certain range
% of frequencies and warps these spectra to a common target peak over
% subjects
%
% [IMA] = pop_collecttemplates(STUDY,varargin);
%
%
% Author: Johanna Wagner, Swartz Center for Computational Neuroscience, UC San Diego, 2019
% adapted from a function written by Julie Onton
%
%
% Example: chooses templates which have a peak in the range [8 14] and
% stretches them to the target frequency 10 using the subject specific median spectra peak in the range [8 14]
% >> [IMA] = pop_collecttemplates(STUDY, 'peakfreq', [8 14],'stretch_spectra', 'on', 'targetpeakfreq', 10, 'plot_template', 'on');
%
% Example: chooses all templates whose spectral amplitude are larger than
% 1/3 of the maximum template amplitude
% >> [IMA] = pop_collecttemplates(STUDY);
%
%
%
% INPUTS:
% required Inputs:
% IMA - previously saved IMA structure (either by running pop_runima or pop_runima_study)
% EEG - EEG structure of associated EEG dataset
%
% optional Inputs:
% peakrange - 'vector of two integers' [min max] include only templates that are active/ have peaks
% in this range of frequencies. If empty choose templates with activations in any
% frequency range
% stretch_spectra - [string] {'on' 'off'} if 'on' stretches templates in
% the frequency range defined by 'peakrange' using the
% subject specific median template peak frequency in the 'peakrange' to stretch
% spectra to a predefined peak as defined in 'targetpeakfreq'.
% default is 'off'. Use is only reccomended when a narrow
% enough 'peakrange' is defined. i.e. 8-14Hz
% targetpeakfreq - ['integer'] defines the target frequency to stretch spectra to
% when 'stretch_spectra' is 'on', if 'targetpeakfreq' is empty uses
% the center frequency of 'peakrange'
% plot_templ - [string] {'on' 'off'} plots overall subject IM templates, the frequency range
% selected (if 'peakrange') is given and the selected templates
function [IMA] = collecttemplates(IMA, EEG, varargin);
g = finputcheck(varargin, {'peakrange' 'integer' [] []; ...
'stretch_spectra' 'string' {'on' 'off'} 'off';...
'targetpeakfreq' 'integer' [] []; ...
'plot_templ' 'string' {'on' 'off'} 'off';...
}, 'inputgui');
if isstr(g), error(g); end;
if strcmp(g.stretch_spectra, 'on') && ~isempty(g.peakrange) && isempty(g.targetpeakfreq);
g.targetpeakfreq = mean(g.peakrange);
elseif strcmp(g.stretch_spectra, 'on') && isempty(g.peakrange);
fprintf('\n \n cannot stretch spectra without given peak frequency range.... \n')
fprintf('\n turning off stretch spectra parameter \n \n')
g.stretch_spectra = 'off';
end
%EEG = pop_loadset('filename',IMA.subjfilename{1},'filepath',IMA.subjfilepath{1});
times = IMA.timevec/1000; % transform timevector to seconds
freqvec = IMA.freqvec;
freqscale = IMA.freqscale;
meanpwr = IMA.meanpwr;
sph = IMA.sph;
wts = IMA.wts;
PCact = IMA.pc; % PC spectral backprojection % former ICAmatall
origspecdat = IMA.timefreq; % original timefrequency matrix containing tf maps of all ICS time x spectra*ICs
speceig = IMA.eigvec; % PC backprojection in time
ws = wts*sph;
winv = pinv(ws);
activations = ws*PCact; % template spectra
specwts = speceig*winv;
winv = specwts; % template timecourse (overwrite ICA winv with ICA/PCA winv)
clear speceig specwts
%% fix ploarity of IMs in the clus_frqlim frequency range
[valActMAX, indAct] = max(abs(activations)');
for onj = 1:size(activations,1);
if activations(onj,indAct(onj))>=0;
polarity(onj,:) = 1;
else
polarity(onj,:) = -1;
end
end
templatesPol = activations.*repmat(polarity,1,size(activations,2));
%% scale templates by RMS
pu = rms(templatesPol');
templates_scaled = templatesPol./repmat(pu',1,size(templatesPol,2));
templatesIMIC = reshape(templates_scaled(:,:)', size(templates_scaled,2)/length(IMA.complist) ,size(templates_scaled,1)*length(IMA.complist))';
IndIMIC = [repelem(1:size(templates_scaled,1),length(IMA.complist))', repmat(IMA.complist,1,size(templates_scaled,1))'];
% select templates in specific frequency range
if ~isempty(g.peakrange)
tempvec = ones(1,length(freqvec))*-1;
%
templ_frqlim = g.peakrange;
[val, freqind1] = min(abs(freqvec-templ_frqlim(1)));
[val, freqind2] = min(abs(freqvec-templ_frqlim(2)));
%window = barthannwin(length(freqvec(freqind1:freqind2)));
window = tukeywin(length(freqvec(freqind1:freqind2)),0.9);
tempvec(freqind1:freqind2) = window;
for inj = 1:size(templatesIMIC,1)
r=corrcoef(tempvec, templatesIMIC(inj,:));
correl(inj) = r(1,2);
end
indICs = find(correl>0.4);
else
indICs = 1:size(IndIMIC,1);
end
ValMax = max(templatesIMIC(indICs,:)');
[ValMax2, inMax] = max(ValMax);
indKeepIMs = find(ValMax > ValMax2/3);
TempKeepInd = IndIMIC(indICs(indKeepIMs),:);
if strcmp(g.stretch_spectra, 'on');
[warped_templs, AV_tempFreq, warpedfreq] = StretchFreqs(templatesIMIC(indICs(indKeepIMs),:),freqvec,g.peakrange,g.targetpeakfreq);
TempKeep = warped_templs;
else
TempKeep = templatesIMIC(indICs(indKeepIMs),:);
end
% collect dipole locations for clustering
dipsources = [];
for temp_idx = 1:size(TempKeepInd,1)
figure;
dipsources(1,temp_idx).posxyz = EEG.dipfit.model(TempKeepInd(temp_idx,2)).posxyz(1,:);%% index should be IC index
dipsources(1,temp_idx).momxyz = EEG.dipfit.model(TempKeepInd(temp_idx,2)).momxyz(1,:);
dipsources(1,temp_idx).rv = EEG.dipfit.model(TempKeepInd(temp_idx,2)).rv;
[h grid_or_val plotrad_or_grid, xmesh, ymesh] = topoplot(EEG.icawinv(:,TempKeepInd(temp_idx,2)),EEG.chanlocs(1:size(EEG.icawinv,1)),'electrodes','off', 'noplot', 'on');
scalpmaps(temp_idx,:,:) = grid_or_val;
end;
%
if strcmp(g.plot_templ, 'on')
if ~isempty(g.peakrange)
figure;
subplot(2,2,1)
plot(templatesIMIC')
semilogx(freqvec,templatesIMIC', 'LineWidth', 1);hold on
set(gca,'FontSize',12)
set(gca,'xtick',[10 20 40 80 120])
xlim([freqvec(1) freqvec(end)])
title(['All IM templates ' IMA.subj{:}])
subplot(2,2,2)
semilogx(freqvec,tempvec, 'LineWidth', 2,'Color','m');hold on
set(gca,'FontSize',12)
set(gca,'xtick',[10 20 40 80 120])
xlim([freqvec(1) freqvec(end)])
title('Freq range selected')
subplot(2,2,3)
semilogx(freqvec,templatesIMIC(indICs(indKeepIMs),:)', 'LineWidth', 2,'Color','m');hold on
set(gca,'FontSize',12)
set(gca,'xtick',[10 20 40 80 120])
xlim([freqvec(1) freqvec(end)])
title(['Selected templates ' IMA.subj{:}])
xlabel('Frequency (Hz)')
else
figure;
subplot(1,2,1)
plot(templatesIMIC')
semilogx(freqvec,templatesIMIC', 'LineWidth', 1);hold on
set(gca,'FontSize',12)
set(gca,'xtick',[10 20 40 80 120])
xlim([freqvec(1) freqvec(end)])
title(['All IM templates ' IMA.subj{:}])
subplot(1,2,2)
semilogx(freqvec,templatesIMIC(indICs(indKeepIMs),:)', 'LineWidth', 2,'Color','m');hold on
set(gca,'FontSize',12)
set(gca,'xtick',[10 20 40 80 120])
xlim([freqvec(1) freqvec(end)])
title(['Selected templates ' IMA.subj{:}])
xlabel('Frequency (Hz)')
end
end
IMA.precluster.templates = TempKeep;
IMA.precluster.IMICindex = TempKeepInd;
IMA.precluster.dipsources = dipsources;
IMA.precluster.scalpmaps = scalpmaps;
%% save IMA results to file
save([IMA.subjfilepath{1} '/' IMA.filename],'IMA');