-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclasses.py
397 lines (337 loc) · 15.6 KB
/
classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import datetime as dt
import logging
from datetime import timedelta
from dateutil import relativedelta
import pandas as pd
import pandas_datareader as pdr
import pandas_gbq as pb
import requests
import talib as ta
from google.cloud import bigquery, bigquery_datatransfer
from sklearn.impute import KNNImputer
import config
import fred_parameters
import census_parameters
import market_parameters
from census_parameters import census_dictionary
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
class GetData:
@staticmethod
def get_security_info(symbol, start_date, end_date):
start_date = CleanData.get_previous_days(start_date, 45)
df = pdr.get_data_yahoo(symbols=symbol, start=start_date, end=end_date)
df['Avg Price'] = ta.AVGPRICE(df['Open'], df['High'], df['Low'], df['Close'], )
df['SMA'] = ta.SMA(df['Close'], timeperiod=5)
df['EMA'] = ta.EMA(df['Close'], timeperiod=5)
df['RSI'] = ta.RSI(df['Close'], timeperiod=14)
df['ADX'] = ta.ADX(df['High'], df['Low'], df['Close'], timeperiod=14)
df = df.iloc[45 - 14:]
return df
@staticmethod
def get_fred_data(code, start_date, end_date):
start = dt.datetime.strptime(start_date, "%m/%d/%Y").strftime("%Y-%m-%d")
end = dt.datetime.strptime(end_date, "%m/%d/%Y").strftime("%Y-%m-%d")
df = pdr.DataReader(code, 'fred', start, end)
df = CleanData.cleanup_dataframe_ML(df)
df['RSI'] = ta.RSI(df[df.columns[0]], timeperiod=14)
x = df.loc[df['Date'] == start_date].index[0]
df = df.iloc[x:]
df.set_index('Date')
return df
@staticmethod
def get_census_data(census_code, start_date, end_date):
api_key = config.census_api_key
start_month = start_date.dt.datetime.strftime("%m")
start_year = start_date.dt.datetime.strftime("%Y")
end_month = end_date.dt.datetime.strftime("%m")
end_year = end_date.dt.datetime.strftime("%Y")
reports = (census_dictionary[census_code])[1]
if reports == 'quarterly':
start_month = CleanData.month2quarter(start_month)
end_month = CleanData.month2quarter(end_month)
base_url = "https://api.census.gov/data/timeseries/eits/{}?".format(census_code)
param_url = "get=cell_value,time_slot_id,error_data,category_code&for&seasonally_adj&data_type_code&"
time_url = "time=from+{}-{}+to+{}-{}&key={}".format(start_year, start_month, end_year, end_month, api_key)
url = base_url + param_url + time_url
response = requests.request('GET', url)
df = pd.DataFrame(response.json()[1:], columns=response.json()[0])
df = df.drop(columns=['time_slot_id', 'error_data', 'category_code', 'seasonally_adj', 'data_type_code'])
df = CleanData.total_report_date_revenue(df, census_code)
df['RSI'] = ta.RSI(df[df.columns[0]], timeperiod=14)
x = df.loc[df['Date'] == start_date].index[0]
df = df.iloc[x:]
df.set_index('Date')
return df
@staticmethod
def get_market_data(start_date, end_date):
market_data = {}
ticker_symbols = market_parameters.get_market_symbols()
for symbol in ticker_symbols:
df = GetData.get_security_info(symbol, start_date, end_date)
market_data.update({symbol: df})
return market_data
@staticmethod
def get_total_fred_data(start_date, end_date):
fred_data = {}
fred_codes = fred_parameters.get_fred_codes()
for code in fred_codes:
df = GetData.get_fred_data(code, start_date, end_date)
fred_data.update({code: df})
return fred_data
@staticmethod
def get_total_census_data(start_date, end_date):
census_data = {}
census_codes = census_parameters.get_census_codes()
for census_code in census_codes:
df = GetData.get_census_data(census_code, start_date, end_date)
census_data.update({census_code: df})
return census_data
class CleanData:
@staticmethod
def cleanup_dataframe(df):
df = df.dropna()
return df
@staticmethod
def cleanup_dataframe_ML(df):
# First we'll clean the majority of the cells using linear interpolation
df = df.interpolate(method='linear')
# Next, we'll copy the index to a list since KNN Imputer drops the index
df_index_list = df.index.tolist()
# Next we'll use the KNNImputer to clean the rest of the NaN values.
# Note: We don't use MinMaxScaler since we're dealing with financials.
knn_imputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean')
df = pd.DataFrame(knn_imputer.fit_transform(df), columns=df.columns)
# Finally we add the Date list back into the dataframe and set it to the index.
df['Date'] = df_index_list
df = df.set_index('Date')
return df
@staticmethod
def month2quarter(month):
month = int(month)
quarter = ''
if month <= 3:
quarter = 'Q1'
elif (month <= 6) and (month >= 4):
quarter = 'Q2'
elif (month <= 9) and (month >= 5):
quarter = 'Q3'
elif (month <= 12) and (month >= 9):
quarter = 'Q4'
return quarter
@staticmethod
def total_report_date_revenue(df, census_code):
new_data = {}
df_duplicates = df[df.duplicated('time')]
duplicate_rows = 1
while duplicate_rows > 0:
try:
date = df_duplicates['time'].iloc[0]
df_date = df.loc[df['time'] == date]
revenue_list = df_date['cell_value'].values.tolist()
rev_copy = []
for i in revenue_list:
if i != "(S)":
rev_copy.append(i)
revenue_list = rev_copy
revenue_list = [eval(i) for i in revenue_list]
rev = int(sum(revenue_list))
new_data.update({date: rev})
df_duplicates = df_duplicates[df.time != date]
duplicate_rows = df_duplicates.duplicated().sum()
except Exception as e:
print(e)
break
df = pd.DataFrame.from_dict(new_data, orient='index')
df.index.name = "Date"
df = df.rename(columns={0: census_code.upper() + " Revenue"})
return df
@staticmethod
def get_previous_days(date_string, amount_of_days):
date_string = dt.datetime.strptime(date_string, '%m/%d/%Y').date()
date_string = date_string - timedelta(days=amount_of_days)
date_string = date_string.strftime('%m/%d/%Y')
return date_string
class BigQueryMethods:
"""
TODO Create DOCSTRING
"""
@staticmethod
def create_dataset(dataset_name, dataset_location):
client = bigquery.Client()
dataset_id = "{}.dataset_name".format(client.project)
dataset = bigquery.Dataset(dataset_id)
dataset_location = dataset_location
try:
dataset = client.create_dataset(dataset, timeout=30)
except BaseException as e:
logging.error(e)
# Set a table expiration timeframe to never expire
dataset = client.get_dataset(dataset_id)
dataset.default_table_expiration_ms = 'Never'
dataset = client.update_dataset(dataset, ["default_table_expiration_ms"])
return
@staticmethod
def copy_dataset(source_dataset_name, destination_dataset_name):
project_id = config.project_id
transfer_client = bigquery_datatransfer.DataTransferServiceClient()
source_project_id = destination_project_id = project_id
source_dataset_id = source_dataset_name
destination_dataset_id = destination_dataset_name
transfer_config = bigquery_datatransfer.TransferConfig(
destination_dataset_id=destination_dataset_id,
display_name="Your Dataset Copy Name",
data_source_id="cross_region_copy",
params={
"source_project_id": source_project_id,
"source_dataset_id": source_dataset_id,
},
schedule="every 24 hours",
)
transfer_config = transfer_client.create_transfer_config(
parent=transfer_client.common_project_path(destination_project_id),
transfer_config=transfer_config,
)
return
@staticmethod
def list_datasets():
client = bigquery.Client()
datasets = list(client.list_datasets())
return datasets
@staticmethod
def delete_dataset(dataset_name, ):
project_id = config.project_id
client = bigquery.Client()
dataset_id = '{}.{}'.format(project_id, dataset_name)
client.delete_dataset(dataset_id, delete_contents=True, not_found_ok=True)
return
@staticmethod
def create_schema_fields(number_of_fields: int):
fields = []
for f in range(number_of_fields):
field_name = input('Field name: ')
field_type = input('Field type: ')
field_mode = input('Field mode: ')
field_mode = "mode={}".format(field_mode)
field = "{}, {}, {}".format(field_name, field_type, field_mode)
fields.append([field])
return fields
@staticmethod
def create_schema(fields: list):
schema = []
for f in fields:
schema.append = [bigquery.SchemaField(f)]
return schema
@staticmethod
def create_table(dataset_name, table_name, schema: list = None):
client = bigquery.Client()
project_id = config.project_id
table_id = "{}.{}.{}".format(project_id, dataset_name, table_name)
if schema is None:
table = bigquery.Table(table_id)
else:
table = bigquery.Table(table_id, schema=schema)
table = client.create_table(table)
return
@staticmethod
def create_table_from_dataframe(dataframe, dataset_name, table_name, table_expiration='Never',
table_description=''):
project_id = config.project_id
table_id = '{}.{}'.format(dataset_name, table_name)
pb.to_gbq(dataframe, table_id, project_id)
if table_description is not None:
BigQueryMethods.set_table_description(dataset_name, table_name, table_description)
if table_expiration is not 'Never':
BigQueryMethods.set_table_expiration(dataset_name, table_name, table_expiration)
return
@staticmethod
def set_table_description(dataset_name, table_name, table_description):
client = bigquery.Client()
project_id = config.project_id
dataset_ref = bigquery.DatasetReference(project_id, dataset_name)
table_ref = dataset_ref.table(table_name)
table = client.get_table(table_ref)
table.description = table_description
table = client.update_table((table, ["description"]))
return
@staticmethod
def set_table_expiration(dataset_name, table_name, table_expiration='Never'):
client = bigquery.Client()
project = client.project
dataset_ref = bigquery.DatasetReference(project, dataset_name)
table_ref = dataset_ref.table(table_name)
table = client.get_table(table_ref)
if table_expiration is not 'Never':
table_expiration = dt.datetime.now(dt.timezone.utc) + timedelta(days=5)
table.expires = table_expiration
table = client.update_table(table, ["expires"])
return
@staticmethod
def copy_table(source_dataset_name, source_table_name, destination_dataset_name, destination_table_name):
project_id = config.project_id
client = bigquery.Client()
source_table = '{}.{}.{}'.format(project_id, source_dataset_name, source_table_name)
destination_table = '{}.{}.{}'.format(project_id, destination_dataset_name, destination_table_name)
job = client.copy_table(source_table, destination_table)
job.result()
return
@staticmethod
def delete_table(dataset_name, table_name):
project_id = config.project_id
client = bigquery.Client()
table_id = '{}.{}.{}'.format(project_id, dataset_name, table_name)
client.delete_table(table_id, not_found_ok=True)
return
@staticmethod
def append_table_data(df, dataset_name, table_name):
project_id = config.project_id
pb.to_gbq(df, dataset_name, table_name, if_exists='append')
return
@staticmethod
def get_table_data(dataset_name, table_name, sql_statement):
project_id = config.project_id
df = pb.read_gbq(sql_statement, project_id)
return df
class Graphs:
@staticmethod
def create_market_graph(security_dataframe, symbol):
security_dataframe.reset_index(inplace=True)
price_min_range = security_dataframe['Avg Price'].min()
price_min_range = price_min_range - (price_min_range * 0.05)
price_max_range = security_dataframe['Avg Price'].max()
price_max_range = price_max_range + (price_max_range * 0.05)
# Create subplots and grid sizes
fig_prices = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.1,
subplot_titles=(
'Price Movement', 'Volume of Shares Traded & Relative Strength Index',
'Average Directional Index'), row_width=[0.3, 0.3, 0.3],
specs=[[{"secondary_y": True}], [{"secondary_y": True}], [{"secondary_y": True}]])
# Plot the OHLC Candlesticks
fig_prices.add_trace(go.Candlestick(x=security_dataframe['Date'],
open=security_dataframe['Open'],
high=security_dataframe['High'],
low=security_dataframe['Low'],
close=security_dataframe['Close'],
name='OHLC Candlesticks'), row=1, col=1, secondary_y=False)
# Add the Moving Averages to the top graph
fig_prices.add_scatter(x=security_dataframe['Date'],
y=security_dataframe['SMA'], mode='lines',
name='Simple Moving Average', row=1, col=1)
fig_prices.add_scatter(x=security_dataframe['Date'],
y=security_dataframe['EMA'], mode='lines',
name='Exponential Moving Average', row=1, col=1)
# Add the volume bars and RSI on the second row without adding it to the legend
fig_prices.add_trace(go.Bar(x=security_dataframe['Date'], y=security_dataframe['Volume'],
showlegend=False), row=2, col=1, secondary_y=False)
# Add the RSI indicator to the third row without adding to the legend
fig_prices.add_trace(go.Scatter(x=security_dataframe['Date'], y=security_dataframe['RSI'],
showlegend=False), row=2, col=1, secondary_y=True)
# Add the ADX indicator to the third row without adding to the legend
fig_prices.add_trace(go.Scatter(x=security_dataframe['Date'], y=security_dataframe['ADX'],
showlegend=False), row=3, col=1)
fig_prices.update_layout(title='Stock Market History for {}'.format(symbol.upper()), yaxis_title='Price Range',
autosize=True)
fig_prices.update(layout_xaxis_rangeslider_visible=False)
fig_prices.show()
return