-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
89 lines (67 loc) · 2.56 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
class FCN8sNet(nn.Module):
def __init__(self, in_res, num_landmarks):
super(FCN8sNet, self).__init__()
self.in_res = in_res
self.num_landmarks = num_landmarks
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 4096, kernel_size=7, stride=1, padding=3)
self.conv5_2 = nn.Conv2d(4096, 4096, kernel_size=1, stride=1, padding=0)
self.conv6_1 = nn.Conv2d(512, self.num_landmarks, kernel_size=1, stride=1, padding=0)
self.conv7_1 = nn.Conv2d(256, self.num_landmarks, kernel_size=1, padding=0)
self.convtrans_1 = nn.ConvTranspose2d(4096, self.num_landmarks, kernel_size=4, stride=4, bias=False)
self.convtrans_2 = nn.ConvTranspose2d(self.num_landmarks, self.num_landmarks, kernel_size=2, stride=2, bias=False)
self.convtrans_3 = nn.ConvTranspose2d(self.num_landmarks, self.num_landmarks, kernel_size=8, stride=8, bias=False)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
def forward(self, x):
# define VGG for encoder part
# block 1
x = F.relu(self.conv1_1(x))
x = F.relu(self.conv1_2(x))
x = self.pool(x)
fm1 = x
# block 2
x = F.relu(self.conv2_1(x))
x = F.relu(self.conv2_2(x))
x = self.pool(x)
fm2 = x
# block 3
x = F.relu(self.conv3_1(x))
x = F.relu(self.conv3_2(x))
x = F.relu(self.conv3_2(x))
x = self.pool(x)
fm3 = x
# block 4
x = F.relu(self.conv4_1(x))
x = F.relu(self.conv4_2(x))
x = F.relu(self.conv4_2(x))
x = self.pool(x)
fm4 = x
# block 5
x = F.relu(self.conv4_2(x))
x = F.relu(self.conv4_2(x))
x = F.relu(self.conv4_2(x))
x = self.pool(x)
fm5 = x
# define decoder part
o = F.relu(self.conv5_1(x))
o = F.relu(self.conv5_2(o))
con1 = self.convtrans_1(o)
con2 = F.relu(self.conv6_1(fm4))
con2 = self.convtrans_2(con2)
con3 = F.relu(self.conv7_1(fm3))
o = con1 + con2 + con3
o = self.convtrans_3(o)
#o = o.view(-1, self.in_res * self.in_res * self.num_landmarks)
return (o)