-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsa.py
145 lines (98 loc) · 3.57 KB
/
sa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
from PIL import Image
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
print(tf.__version__)
import cv2
import os
b=[""]
def clothes_detector(c):
b[0]=c
print(b[0])
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'T-shirt/top', 'T-shirt/top', 'Ankle boot']
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)
train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
probability_model = tf.keras.Sequential([model,
tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)
predictions[0]
np.argmax(predictions[0])
test_labels[0]
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array, true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array, true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
# Grab an image from the test dataset.
#img = test_images[1]
a=os.getcwd()
print(b[0])
img = Image.open(b[0])
img = img.resize((28, 28))
img.save('image1.jpg')
b[0]='image1.jpg'
gray_image = cv2.cvtColor(np.array(Image.open(b[0])), cv2.COLOR_BGR2GRAY)
#b[0]= np.array(Image.open(gray_image))
img=gray_image
img = img / 255.0
#print(img.shape)
# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))
print(img.shape)
predictions_single = probability_model.predict(img)
print(predictions_single)
print(class_names)
i=0
print(np.argmax(predictions_single[i]))
return(class_names[np.argmax(predictions_single[i])])
#plot_value_array(i, predictions_single[i], test_labels)
#plt.show()
#plot_value_array(1, predictions_single[0], test_labels)
#_ = plt.xticks(range(10), class_names, rotation=45)
#np.argmax(predictions_single[0])