-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
439 lines (378 loc) · 16.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
import time
import json
import random
import pprint
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from lib.modeling.model import build_model
from lib.modeling.loss import build_loss
from lib.dataset.vidgr_dataset import build_dataset, collate_fn_feat, collate_fn_raw, prepare_batch_inputs
from lib.utils.misc import cur_time, AverageMeter
from lib.utils.model_utils import count_parameters
from lib.utils.logger import setup_logger
from lib.configs import args
from test import eval_epoch, test
def set_seed(seed, use_cuda=True):
# fix seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed_all(seed)
def train_setup(logger):
if torch.cuda.is_available() and args.use_gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.device
use_cuda = True
device = torch.device('cuda')
else:
device = torch.device('cpu')
if args.seed:
set_seed(args.seed, use_cuda)
if args.debug: # keep the model run deterministically
# 'cudnn.benchmark = True' enabled auto finding the best algorithm for a specific input/net config.
# Enable this only when input size is fixed.
cudnn.benchmark = False
cudnn.deterministic = True
model = build_model(args)
criterion = build_loss(args)
model.to(device)
criterion.to(device)
# param_dicts = [{'params': [param for name, param in model.named_parameters() if param.requires_grad]}]
backbone_params = []
head_params = []
for name, param in model.named_parameters():
if param.requires_grad:
if 'backbone' in name and args.data_type == 'raw':
# param.requires_grad = False
backbone_params.append(param)
if 'head' in name:
head_params.append(param)
if len(backbone_params) > 0:
param_dicts = [{'params':backbone_params}, {'params':head_params}]
else:
param_dicts = [{'params':head_params}]
# optimizer
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.wd)
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(param_dicts, lr=args.lr, weight_decay=args.wd)
if args.optimizer == 'adamw':
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.wd)
if len(backbone_params) > 0:
optimizer.param_groups[0]['lr'] = args.lr/(10**1)
optimizer.param_groups[1]['lr'] = args.lr
# scheduler
if args.scheduler == 'steplr':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_drop_step)
if args.scheduler == 'multisteplr':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_drop_step)
if args.scheduler == 'reducelronplateau':
# TODO
lr_scheduler = ReduceLROnPlateau(
optimizer,
mode='max',
factor=0.1,
patience=1,
threshold=0.5,
verbose=True
)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if args.resume_all:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
logger.info(f'Loaded model saved at epoch {checkpoint["epoch"]} from checkpoint: {args.resume}')
return model, criterion, optimizer, lr_scheduler
def train_epoch(model, dataloader, criterion, optimizer, epoch_i):
model.train()
criterion.train()
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
tictoc = time.time()
for idx, batch in tqdm(enumerate(dataloader),
desc='Training Iteration',
total=len(dataloader)):
time_meters['dataloading_time'].update(time.time() - tictoc)
tictoc = time.time()
device = 'cuda' if torch.cuda.is_available() and args.use_gpu else 'cpu'
model_inputs, targets = prepare_batch_inputs(batch[1], device, non_blocking=args.pin_memory)
# inputs: src_txt [batch_size, num_input_sentences, dim]
# src_txt_mask [batch_size, num_input_sentences]
# src_vid [batch_size, num_input_frames, dim]
# src_vid_mask [batch_size, num_input_frames]
# targets: target_spans [batch_size]
time_meters['prepare_inputs_time'].update(time.time() - tictoc)
# predict video-wisely
# if args.num_input_sentences == 1:
# optimizer.zero_grad()
# model_inputs['src_txt'] = model_inputs['src_txt'].permute(1,0,2)
# model_inputs['src_txt_mask'] = model_inputs['src_txt_mask'].permute(1,0)
# for src_txt, src_txt_mask, tgt in zip(model_inputs['src_txt'],
# model_inputs['src_txt_mask'],
# targets['target_spans']):
# tictoc = time.time()
# src_txt = src_txt.unsqueeze(1) # bxd->bx1xd
# src_txt_mask = src_txt_mask.unsqueeze(1) # bx1
# target = defaultdict(list)
# target['target_spans'].append(tgt)
# outputs = model(src_txt=src_txt,
# src_txt_mask=src_txt_mask,
# src_vid=model_inputs['src_vid'],
# src_vid_mask=model_inputs['src_vid_mask'],
# att_visualize=args.att_visualize,
# corr_visualize=args.corr_visualize,
# epoch_i=epoch_i,
# idx=idx)
# # outputs: pred_logits [batch_size, num_proposals, num_classes]
# # pred_spans [batch_size, num_proposals, num_classes]
# # aux_outputs (pred_logits, pred_spans)
# loss_dict = criterion(outputs, target)
# weight_dict = criterion.weight_dict
# losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# time_meters['model_forward_time'].update(time.time() - tictoc)
# tictoc = time.time()
# losses.backward()
# time_meters['model_backward_time'].update(time.time() - tictoc)
# optimizer.step()
# predict fixed-sentences per video
# else:
tictoc = time.time()
outputs = model(**model_inputs,
att_visualize=args.att_visualize,
corr_visualize=args.corr_visualize,
epoch_i=epoch_i,
idx=idx)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
time_meters['model_forward_time'].update(time.time() - tictoc)
tictoc = time.time()
optimizer.zero_grad()
losses.backward()
optimizer.step()
time_meters['model_backward_time'].update(time.time() - tictoc)
loss_dict['loss_overall'] = float(losses)
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
tictoc = time.time()
if args.debug and idx == 3:
break
return time_meters, loss_meters
def train(logger, run=None):
model, criterion, optimizer, lr_scheduler = train_setup(logger)
logger.info(f'Model {model}')
n_all, n_trainable = count_parameters(model)
if run:
run[f"num_params"].log(n_all)
run[f"num_trainable_params"].log(n_trainable)
logger.info(f'Start Training...')
args.phase = 'train'
train_dataset = build_dataset(args)
train_loader = DataLoader(
train_dataset,
collate_fn=collate_fn_feat if 'features' in args.data_type else collate_fn_raw,
batch_size=args.bs,
shuffle=True,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
# create checkpoint
if not os.path.exists(args.checkpoint):
os.makedirs(args.checkpoint)
if args.start_epoch is None:
start_epoch = -1 if args.eval_untrained else 0
else:
start_epoch = start_epoch
for epoch_i in trange(start_epoch, args.end_epoch, desc='Training Epoch'):
if start_epoch > -1:
time_meters, loss_meters = train_epoch(model, train_loader, criterion, optimizer, epoch_i)
# train log
if run:
for k, v in loss_meters.items():
run[f"Train/{k}"].log(v.avg)
logger.info(
"Training Logs\n"
"[Epoch] {epoch:03d}\n"
"[Time]\n{time_stats}\n"
"[Loss]\n{loss_str}\n".format(
time_str=time.strftime("%Y-%m-%d %H:%M:%S"),
epoch=epoch_i+1,
time_stats="\n".join("\t> {} {:.4f}".format(k, v.avg) for k, v in time_meters.items()),
loss_str="\n".join(["\t> {} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()])
)
)
lr_scheduler.step()
if (epoch_i + 1) % args.save_interval == 0:
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch_i,
'args': args
}
torch.save(
checkpoint,
os.path.join(
args.checkpoint,
f'{epoch_i:04d}_model_{args.dataset}_{args.backbone}_' \
f'{args.bs}b_{args.enc_layers}l_{args.num_input_frames}f_{args.num_proposals}q_' \
f'{args.pred_label}_{args.set_cost_span}_{args.set_cost_giou}_{args.set_cost_query}.ckpt'
)
)
if args.debug:
break
def train_val(logger, run=None):
model, criterion, optimizer, lr_scheduler = train_setup(logger)
logger.info(f'Model {model}')
n_all, n_trainable = count_parameters(model)
if run:
run[f"num_params"].log(n_all)
run[f"num_trainable_params"].log(n_trainable)
logger.info(f'Start Training...')
args.phase = 'train'
train_dataset = build_dataset(args)
train_loader = DataLoader(
train_dataset,
collate_fn=collate_fn_feat if 'features' in args.data_type else collate_fn_raw,
batch_size=args.bs,
shuffle=True,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
if args.dataset in ['activitynet']:
args.phase = 'val'
val_dataset = build_dataset(args)
val_loader = DataLoader(
val_dataset,
collate_fn=collate_fn_feat if 'features' in args.data_type else collate_fn_raw,
batch_size=args.eval_bs,
shuffle=False,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
else:
args.phase = 'test'
val_dataset = build_dataset(args)
val_loader = DataLoader(
val_dataset,
collate_fn=collate_fn_feat if 'features' in args.data_type else collate_fn_raw,
batch_size=args.eval_bs,
shuffle=False,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
# for early stop purpose
best_loss = np.inf
early_stop_count = 0
# create checkpoint
if not os.path.exists(args.checkpoint):
os.makedirs(args.checkpoint)
if args.start_epoch is None:
start_epoch = -1 if args.eval_untrained else 0
else:
start_epoch = start_epoch
for epoch_i in trange(start_epoch, args.end_epoch, desc='Training Epoch'):
if start_epoch > -1:
time_meters, loss_meters = train_epoch(model, train_loader, criterion, optimizer, epoch_i)
# train log
if run:
for k, v in loss_meters.items():
run[f"Train/{k}"].log(v.avg)
logger.info(
"Training Logs\n"
"[Epoch] {epoch:03d}\n"
"[Time]\n{time_stats}\n"
"[Loss]\n{loss_str}\n".format(
time_str=time.strftime("%Y-%m-%d %H:%M:%S"),
epoch=epoch_i+1,
time_stats="\n".join("\t> {} {:.4f}".format(k, v.avg) for k, v in time_meters.items()),
loss_str="\n".join(["\t> {} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()])
)
)
lr_scheduler.step()
if (epoch_i + 1) % args.val_interval == 0:
with torch.no_grad():
results_filename = f'{cur_time()}_{args.dataset}_{args.backbone}_' \
f'{args.bs}b_{args.enc_layers}l_{args.num_input_frames}f_{args.num_proposals}q_' \
f'{args.pred_label}_{args.set_cost_span}_{args.set_cost_giou}_{args.set_cost_query}_val.jsonl'
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, val_loader, results_filename, criterion, logger=logger)
cur_loss = eval_loss_meters['loss_overall'].avg # TODO
# val log
if run:
for k, v in eval_loss_meters.items():
run[f"Val/{k}"].log(v.avg)
for k, v in metrics_no_nms["brief"].items():
run[f"Val/{k}"].log(float(v))
if metrics_nms is not None:
for k, v in metrics_nms["brief"].items():
run[f"Val/{k}"].log(float(v))
logger.info(
"\n>>>>> Evalutation\n"
"[Epoch] {epoch:03d}\n"
"[Loss]\n{loss_str}\n"
"[Metrics_No_NMS]\n{metrics}\n".format(
time_str=time.strftime("%Y-%m-%d %H:%M:%S"),
epoch=epoch_i+1,
loss_str="\n".join(["\t> {} {:.4f}".format(k, v.avg) for k, v in eval_loss_meters.items()]),
metrics=pprint.pformat(metrics_no_nms["brief"], indent=4)
)
)
if metrics_nms is not None:
logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))
# early stop
if cur_loss < best_loss:
early_stop_count = 0
best_loss = cur_loss
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch_i,
'args': args
}
torch.save(
checkpoint,
os.path.join(
args.checkpoint,
f'best_model_{args.dataset}_{args.backbone}_' \
f'{args.bs}b_{args.enc_layers}l_{args.num_input_frames}f_{args.num_proposals}q_' \
f'{args.pred_label}_{args.set_cost_span}_{args.set_cost_giou}_{args.set_cost_query}.ckpt'
)
)
else:
if args.early_stop_patience != -1:
early_stop_count += 1
if args.early_stop_patience and early_stop_count > args.early_stop_patience:
logger.info(f'\n>>>>> Early Stop at Epoch {epoch_i+1} (best val loss: {best_loss})\n')
break
if (epoch_i + 1) % args.save_interval == 0:
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch_i,
'args': args
}
torch.save(
checkpoint,
os.path.join(
args.checkpoint,
f'{epoch_i:04d}_model_{args.dataset}_{args.backbone}_' \
f'{args.bs}b_{args.enc_layers}l_{args.num_input_frames}f_{args.num_proposals}q_' \
f'{args.pred_label}_{args.set_cost_span}_{args.set_cost_giou}_{args.set_cost_query}.ckpt'
)
)
if args.debug:
break
if __name__ == '__main__':
logger = setup_logger('LVTR', args.log_dir, distributed_rank=0, filename=cur_time()+"_train.txt")
train_val(logger, run=run)