-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
404 lines (340 loc) · 16.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import time
import pprint
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import more_itertools as mit
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from tqdm import tqdm
from collections import defaultdict
from lib.modeling.model import build_model
from lib.modeling.loss import build_loss
from lib.modeling.bipartite_matcher import build_bipartite_matcher
from lib.evaluate.eval import eval_results
from lib.dataset.vidgr_dataset import build_dataset, collate_fn_feat, collate_fn_raw, prepare_batch_inputs
from lib.utils.misc import cur_time, save_jsonl, save_json, AverageMeter
from lib.utils.span_utils import span_cw_to_xx
from lib.utils.temporal_nms import temporal_nms
from lib.utils.logger import setup_logger
from lib.configs import args
def post_processing_vg_nms(vg_res, nms_thd, max_before_nms, max_after_nms):
vg_res_after_nms = []
for e in vg_res:
e["pred_timespan"] = temporal_nms(
e["pred_timespan"][:max_before_nms],
nms_thd=nms_thd,
max_after_nms=max_after_nms
)
vg_res_after_nms.append(e)
return vg_res_after_nms
def eval_epoch_post_processing(args, results, ground_truth, results_filename, logger):
logger.info('Saving/Evaluating no nms results')
results_path = os.path.join(args.results_dir, results_filename)
save_jsonl(results, results_path)
metrics = None
latest_file_paths = [results_path, ]
if args.phase in ['val', 'test']:
metrics = eval_results(
results,
ground_truth,
verbose=args.debug
)
save_metrics_path = results_path.replace('.jsonl', '_metrics.json')
save_json(metrics, save_metrics_path, save_pretty=True, sort_keys=False)
latest_file_paths = [results_path, save_metrics_path]
metrics_nms = None
if args.nms_thd != -1:
logger.info(f'[VG] Performing nms with nms_thd {args.nms_thd}')
results_after_nms = post_processing_vg_nms(
results,
nms_thd=args.nms_thd,
max_before_nms=args.max_before_nms,
max_after_nms=args.max_after_nms
)
logger.info('Saving/Evaluating nms results')
results_nms_path = results_path.replace('.jsonl', f'_nms_thd_{args.nms_thd}.jsonl')
save_jsonl(results_after_nms, results_nms_path)
latest_file_paths = [results_nms_path, ]
if args.phase in ['val', 'test']:
metrics_nms = eval_results(
results_after_nms,
ground_truth,
verbose=args.debug
)
save_metrics_nms_path = results_nms_path.replace('.jsonl', '_metrics.json')
save_json(metrics_nms, save_metrics_nms_path, save_pretty=True, sort_keys=False)
latest_file_paths += [results_nms_path, save_metrics_nms_path]
return metrics, metrics_nms, latest_file_paths
@torch.no_grad()
def get_eval_res(model, eval_loader, criterion, dist_visualize=False):
'''compute and save query and video proposal embeddings'''
model.eval()
criterion.eval()
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
vg_res = []
test_all_samples = True
if dist_visualize:
x = torch.empty(size=(args.eval_bs*len(eval_loader), args.num_proposals))
y = torch.empty(size=(args.eval_bs*len(eval_loader), args.num_proposals))
durations = []
for b_idx, batch in tqdm(enumerate(eval_loader),
desc='Evaluation',
total=len(eval_loader)):
annotations = batch[0]
device = 'cuda' if torch.cuda.is_available() and args.use_gpu else 'cpu'
model_inputs, targets = prepare_batch_inputs(batch[1], device, non_blocking=args.pin_memory)
if test_all_samples:
src_txt = model_inputs['src_txt']
src_txt_mask = model_inputs['src_txt_mask']
src_vid = model_inputs['src_vid']
src_vid_mask = model_inputs['src_vid_mask']
split_src_txt = src_txt.split(args.num_input_sentences, dim=1) # (bs, #query, #pred)
split_src_txt_mask = src_txt_mask.split(args.num_input_sentences, dim=1) # (bs, #query, #pred)
split_targets = [
{'spans': split} \
for target_spans in targets['target_spans'] \
for split in target_spans['spans'].split(args.num_input_sentences)
]
for idx, (annos, src_txt, src_txt_mask, tgt) in enumerate(zip(annotations,
split_src_txt,
split_src_txt_mask,
split_targets)):
tictoc = time.time()
outputs = model(
src_txt=src_txt,
src_txt_mask=src_txt_mask,
src_vid=src_vid,
src_vid_mask=src_vid_mask,
att_visualize=args.att_visualize,
corr_visualize=args.corr_visualize,
epoch_i=b_idx,
idx=idx
)
time_meters['model_forward_time'].update(time.time() - tictoc)
targets = {}
targets['target_spans'] = [tgt]
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
loss_dict['loss_overall'] = float(losses) # for logging only
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
timespans = outputs['pred_spans'] # (batch_size, #queries, 2)
label_prob = F.softmax(outputs['pred_logits'], -1) # (batch_size, #queries, #classes)
scores, labels = label_prob.max(-1) # (batch_size, #queries)
if dist_visualize:
x[args.eval_bs*b_idx+idx] = timespans[:, :, 0] # <- [#queries]
y[args.eval_bs*b_idx+idx] = timespans[:, :, 1] # <- [#queries]
durations.append(annos['duration'])
# compose predictions
for span, score, label in zip(timespans.cpu(),
scores.cpu(),
labels.cpu()):
if args.span_type == 'cw':
duration = annos['duration'] if 'duration' in annos else annos['num_frames']
spans = torch.clamp(span_cw_to_xx(span), min=0, max=1) * duration
# (#queries, 4), [label(int), start(float), end(float), score(float)]
sorted_preds = torch.cat([label[:, None], spans, score[:, None]], dim=1).tolist()
if not args.no_sort_results:
sorted_preds = sorted(sorted_preds, key=lambda x: x[3], reverse=True)
sorted_preds = torch.tensor(sorted_preds)
sorted_labels = sorted_preds[:, 0].int().tolist()
sorted_spans = sorted_preds[:, 1:].tolist()
sorted_spans = [[float(f'{e:.4f}') for e in row] for row in sorted_spans]
for idx, query in enumerate(annos['sentences']):
pred_spans = [pred_span for pred_label, pred_span in zip(sorted_labels, sorted_spans) if pred_label == idx]
if len(pred_spans) == 0:
continue
cur_query_pred = dict(
video_id=annos['video_id'],
query=query,
pred_timespan=pred_spans,
)
vg_res.append(cur_query_pred)
if args.debug:
break
else:
tictoc = time.time()
outputs = model(**model_inputs)
time_meters['model_forward_time'].update(time.time() - tictoc)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
loss_dict['loss_overall'] = float(losses) # for logging only
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
timespans = outputs['pred_spans'] # (batch_size, #queries, 2)
label_prob = F.softmax(outputs['pred_logits'], -1) # (batch_size, #queries, #classes)
scores, labels = label_prob.max(-1) # (batch_size, #queries)
# compose predictions
for annos, span, score, label in zip(annotations,
timespans.cpu(),
scores.cpu(),
labels.cpu()):
if args.span_type == 'cw':
duration = annos['duration'] if 'duration' in annos else annos['num_frames']
spans = torch.clamp(span_cw_to_xx(span), min=0, max=1) * duration
# (#queries, 4), [label(int), start(float), end(float), score(float)]
sorted_preds = torch.cat([label[:, None], spans, score[:, None]], dim=1).tolist()
if not args.no_sort_results:
sorted_preds = sorted(sorted_preds, key=lambda x: x[3], reverse=True)
sorted_preds = torch.tensor(sorted_preds)
sorted_labels = sorted_preds[:, 0].int().tolist()
sorted_spans = sorted_preds[:, 1:].tolist()
sorted_spans = [[float(f'{e:.4f}') for e in row] for row in sorted_spans]
for idx, query in enumerate(annos['sentences']):
pred_spans = [pred_span for pred_label, pred_span in zip(sorted_labels, sorted_spans) if pred_label == idx]
if len(pred_spans) == 0:
continue
cur_query_pred = dict(
video_id=annos['video_id'],
query=query,
pred_timespan=pred_spans,
)
vg_res.append(cur_query_pred)
if args.debug:
break
if dist_visualize:
col = 5
row = args.num_proposals // col
fig, _ = plt.subplots(row, col, figsize=(col*3, row*3))
x = x.transpose(0, 1) # [#queries, #samples]
y = y.transpose(0, 1) # [#queries, #samples]
marker_size = [10] * x.shape[1] # #queries
for i, (x_, y_) in enumerate(zip(x, y)):
marker_color = np.log(y_)
plt.subplot(row, col, i+1)
plt.scatter(x_, y_, s=marker_size, c=marker_color,
cmap='GnBu', marker='o', alpha=0.5)
plt.tick_params(
top=False,
bottom=False,
left=False,
right=False,
labelleft=False,
labelbottom=False
)
plt.tight_layout()
plt.savefig('pred_dist.png')
# logger.info(
# "Training Logs\n"
# "[Time]\n{time_stats}\n".format(
# time_str=time.strftime("%Y-%m-%d %H:%M:%S"),
# time_stats="\n".join("\t> {} {:.4f}".format(k, v.avg) for k, v in time_meters.items()),
# )
# )
return vg_res, loss_meters
def eval_epoch(model, eval_loader, results_filename, criterion, logger=None):
model.eval()
criterion.eval()
results, loss_meters = get_eval_res(model, eval_loader, criterion, args.dist_visualize)
if not os.path.exists(args.results_dir):
os.makedirs(args.results_dir)
if args.no_sort_results:
results_filename = results_filename.replace(".jsonl", "_unsorted.jsonl")
pred_vids = [e["video_id"] for e in results]
ground_truth = eval_loader.dataset.get_gt_with_vids(pred_vids)
metrics_no_nms, metrics_nms, latest_file_paths = eval_epoch_post_processing(
args, results, ground_truth, results_filename, logger)
return metrics_no_nms, metrics_nms, loss_meters, latest_file_paths
def eval_setup(logger):
if torch.cuda.is_available() and args.use_gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.device
use_cuda = True
device = torch.device('cuda')
else:
device = torch.device('cpu')
# if torch.cuda.is_available() and args.device.type == 'cuda':
# model.to('cuda')
# criterion.to('cuda')
cudnn.benchmark = True
cudnn.deterministic = False
model = build_model(args)
criterion = build_loss(args)
model.to(device)
criterion.to(device)
param_dicts = [{'params': [param for name, param in model.named_parameters() if param.requires_grad]}]
# optimizer
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.wd)
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(param_dicts, lr=args.lr, weight_decay=args.wd)
if args.optimizer == 'adamw':
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.wd)
# scheduler
if args.scheduler == 'steplr':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_drop_step)
if args.scheduler == 'multisteplr':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_drop_step)
if args.scheduler == 'reducelronplateau':
# TODO
lr_scheduler = ReduceLROnPlateau(
optimizer,
mode='max',
factor=0.1,
patience=1,
threshold=0.5,
verbose=True
)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
state_dict = checkpoint['model']
if 'module' in list(state_dict.keys())[0]:
keys = state_dict.keys()
values = state_dict.values()
new_keys = []
for key in keys:
new_key = key[7:] # remove the 'module.'
new_keys.append(new_key)
from collections import OrderedDict
new_dict = OrderedDict(list(zip(new_keys, values)))
model.load_state_dict(new_dict)
else:
model.load_state_dict(checkpoint['model'])
if args.resume_all:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
logger.info(f'Loaded model saved at epoch {checkpoint["epoch"]} from checkpoint: {args.resume}')
else:
logger.warning('If you intend to evaluate the model, please specify --resume with ckpt path')
return model, criterion, optimizer, lr_scheduler
def test(logger, run=None):
model, criterion, _, _ = eval_setup(logger)
args.phase = 'test'
test_dataset = build_dataset(args)
test_loader = DataLoader(
test_dataset,
collate_fn=collate_fn_feat if 'features' in args.data_type else collate_fn_raw,
batch_size=args.eval_bs,
shuffle=False,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
results_filename = f'{cur_time()}_{args.dataset}_{args.backbone}_' \
f'{args.bs}b_{args.enc_layers}l_{args.num_input_frames}f_{args.num_proposals}q_' \
f'{args.pred_label}_{args.set_cost_span}_{args.set_cost_giou}_{args.set_cost_query}_test.jsonl'
logger.info("Start inference...")
with torch.no_grad():
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, test_loader, results_filename, criterion, logger=logger)
# test log
if run:
for k, v in eval_loss_meters.items():
run[f"Test/{k}"].log(v.avg)
for k, v in metrics_no_nms["brief"].items():
run[f"Test/{k}"].log(float(v))
if metrics_nms is not None:
for k, v in metrics_nms["brief"].items():
run[f"Test/{k}"].log(float(v))
logger.info(f'metrics_no_nms {pprint.pformat(metrics_no_nms["brief"], indent=4)}')
if metrics_nms is not None:
logger.info(f'metrics_nms {pprint.pformat(metrics_nms["brief"], indent=4)}')
if __name__ == '__main__':
logger = setup_logger('LVTR_eval', args.log_dir, distributed_rank=0, filename=cur_time()+"_eval.txt")
test(logger, run=run)