forked from songyingxin/TextClassification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval.py
122 lines (83 loc) · 4 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
from tensorboardX import SummaryWriter
from tqdm import tqdm
import torch
import time
from Utils.utils import classifiction_metric
def train(epoch_num, model, train_dataloader, dev_dataloader, optimizer, criterion, label_list, out_model_file, log_dir, print_step, data_type='word'):
model.train()
writer = SummaryWriter(
log_dir=log_dir + '/' + time.strftime('%H:%M:%S', time.gmtime()))
global_step = 0
best_dev_loss = float('inf')
for epoch in range(int(epoch_num)):
print(f'---------------- Epoch: {epoch+1:02} ----------')
epoch_loss = 0
train_steps = 0
all_preds = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
optimizer.zero_grad()
if data_type == 'word':
logits = model(batch.text)
elif data_type == 'highway':
logits = model(batch.text_word, batch.text_char)
loss = criterion(logits.view(-1, len(label_list)), batch.label)
labels = batch.label.detach().cpu().numpy()
preds = np.argmax(logits.detach().cpu().numpy(), axis=1)
loss.backward()
optimizer.step()
global_step += 1
epoch_loss += loss.item()
train_steps += 1
all_preds = np.append(all_preds, preds)
all_labels = np.append(all_labels, labels)
if global_step % print_step == 0:
train_loss = epoch_loss / train_steps
train_acc, train_report = classifiction_metric(
all_preds, all_labels, label_list)
dev_loss, dev_acc, dev_report = evaluate(
model, dev_dataloader, criterion, label_list, data_type)
c = global_step // print_step
writer.add_scalar("loss/train", train_loss, c)
writer.add_scalar("loss/dev", dev_loss, c)
writer.add_scalar("acc/train", train_acc, c)
writer.add_scalar("acc/dev", dev_acc, c)
for label in label_list:
writer.add_scalar(label + ":" + "f1/train",
train_report[label]['f1-score'], c)
writer.add_scalar(label + ":" + "f1/dev",
dev_report[label]['f1-score'], c)
print_list = ['macro avg', 'weighted avg']
for label in print_list:
writer.add_scalar(label + ":" + "f1/train",
train_report[label]['f1-score'], c)
writer.add_scalar(label + ":" + "f1/dev",
dev_report[label]['f1-score'], c)
if dev_loss < best_dev_loss:
best_dev_loss = dev_loss
torch.save(model.state_dict(), out_model_file)
model.train()
writer.close()
def evaluate(model, iterator, criterion, label_list, data_type='word'):
model.eval()
epoch_loss = 0
all_preds = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
with torch.no_grad():
for batch in iterator:
if data_type == 'word':
with torch.no_grad():
logits = model(batch.text)
elif data_type == 'highway':
with torch.no_grad():
logits = model(batch.text_word, batch.text_char)
loss = criterion(logits.view(-1, len(label_list)), batch.label)
labels = batch.label.detach().cpu().numpy()
preds = np.argmax(logits.detach().cpu().numpy(), axis=1)
all_preds = np.append(all_preds, preds)
all_labels = np.append(all_labels, labels)
epoch_loss += loss.item()
acc, report = classifiction_metric(
all_preds, all_labels, label_list)
return epoch_loss/len(iterator), acc, report