forked from hotshotco/Hotshot-XL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
233 lines (188 loc) · 8.68 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("/")
import os
import argparse
import torch
from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline
from hotshot_xl.pipelines.hotshot_xl_controlnet_pipeline import HotshotXLControlNetPipeline
from hotshot_xl.models.unet import UNet3DConditionModel
import torchvision.transforms as transforms
from einops import rearrange
from hotshot_xl.utils import save_as_gif, save_as_mp4, extract_gif_frames_from_midpoint, scale_aspect_fill
from torch import autocast
from diffusers import ControlNetModel
from contextlib import contextmanager
from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler
SCHEDULERS = {
'EulerAncestralDiscreteScheduler': EulerAncestralDiscreteScheduler,
'EulerDiscreteScheduler': EulerDiscreteScheduler,
'default': None,
# add more here
}
def parse_args():
parser = argparse.ArgumentParser(description="Hotshot-XL inference")
parser.add_argument("--pretrained_path", type=str, default="hotshotco/Hotshot-XL")
parser.add_argument("--xformers", action="store_true")
parser.add_argument("--spatial_unet_base", type=str)
parser.add_argument("--lora", type=str)
parser.add_argument("--output", type=str, required=True)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--prompt", type=str,
default="a bulldog in the captains chair of a spaceship, hd, high quality")
parser.add_argument("--negative_prompt", type=str, default="blurry")
parser.add_argument("--seed", type=int, default=455)
parser.add_argument("--width", type=int, default=672)
parser.add_argument("--height", type=int, default=384)
parser.add_argument("--target_width", type=int, default=512)
parser.add_argument("--target_height", type=int, default=512)
parser.add_argument("--og_width", type=int, default=1920)
parser.add_argument("--og_height", type=int, default=1080)
parser.add_argument("--video_length", type=int, default=8)
parser.add_argument("--video_duration", type=int, default=1000)
parser.add_argument("--low_vram_mode", action="store_true")
parser.add_argument('--scheduler', type=str, default='EulerAncestralDiscreteScheduler',
help='Name of the scheduler to use')
parser.add_argument("--control_type", type=str, default=None, choices=["depth", "canny"])
parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7)
parser.add_argument("--control_guidance_start", type=float, default=0.0)
parser.add_argument("--control_guidance_end", type=float, default=1.0)
parser.add_argument("--gif", type=str, default=None)
parser.add_argument("--precision", type=str, default='f16', choices=[
'f16', 'f32', 'bf16'
])
parser.add_argument("--autocast", type=str, default=None, choices=[
'f16', 'bf16'
])
parser.add_argument("--base_is_full_model", action='store_true')
parser.add_argument("--base_key_mapping", type=str, default=None)
return parser.parse_args()
to_pil = transforms.ToPILImage()
def to_pil_images(video_frames: torch.Tensor, output_type='pil'):
video_frames = rearrange(video_frames, "b c f w h -> b f c w h")
bsz = video_frames.shape[0]
images = []
for i in range(bsz):
video = video_frames[i]
for j in range(video.shape[0]):
if output_type == "pil":
images.append(to_pil(video[j]))
else:
images.append(video[j])
return images
@contextmanager
def maybe_auto_cast(data_type):
if data_type:
with autocast("cuda", dtype=data_type):
yield
else:
yield
def main():
args = parse_args()
if args.control_type and not args.gif:
raise ValueError("Controlnet specified but you didn't specify a gif!")
if args.gif and not args.control_type:
print("warning: gif was specified but no control type was specified. gif will be ignored.")
output_dir = os.path.dirname(args.output)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
device = torch.device("cuda")
control_net_model_pretrained_path = None
if args.control_type:
control_type_to_model_map = {
"canny": "diffusers/controlnet-canny-sdxl-1.0",
"depth": "diffusers/controlnet-depth-sdxl-1.0",
}
control_net_model_pretrained_path = control_type_to_model_map[args.control_type]
data_type = torch.float32
if args.precision == 'f16':
data_type = torch.half
elif args.precision == 'f32':
data_type = torch.float32
elif args.precision == 'bf16':
data_type = torch.bfloat16
pipe_line_args = {
"torch_dtype": data_type,
"use_safetensors": True
}
PipelineClass = HotshotXLPipeline
if control_net_model_pretrained_path:
PipelineClass = HotshotXLControlNetPipeline
pipe_line_args['controlnet'] = \
ControlNetModel.from_pretrained(control_net_model_pretrained_path, torch_dtype=data_type)
if args.spatial_unet_base:
unet_3d = UNet3DConditionModel.from_pretrained(args.pretrained_path, subfolder="unet", torch_dtype=data_type).to(device)
unet = UNet3DConditionModel.from_pretrained_spatial(args.spatial_unet_base, base_is_full_model=args.base_is_full_model, mapping_file_path=args.base_key_mapping).to(device, dtype=data_type)
temporal_layers = {}
unet_3d_sd = unet_3d.state_dict()
for k, v in unet_3d_sd.items():
if 'temporal' in k:
temporal_layers[k] = v
unet.load_state_dict(temporal_layers, strict=False)
pipe_line_args['unet'] = unet
del unet_3d_sd
del unet_3d
del temporal_layers
pipe = PipelineClass.from_pretrained(args.pretrained_path, **pipe_line_args).to(device)
if args.lora:
pipe.load_lora_weights(args.lora)
SchedulerClass = SCHEDULERS[args.scheduler]
if SchedulerClass is not None:
pipe.scheduler = SchedulerClass.from_config(pipe.scheduler.config)
if args.xformers:
pipe.enable_xformers_memory_efficient_attention()
generator = torch.Generator().manual_seed(args.seed) if args.seed else None
autocast_type = None
if args.autocast == 'f16':
autocast_type = torch.half
elif args.autocast == 'bf16':
autocast_type = torch.bfloat16
if type(pipe) is HotshotXLControlNetPipeline:
kwargs = {}
else:
kwargs = {
"low_vram_mode": args.low_vram_mode
}
if args.gif and type(pipe) is HotshotXLControlNetPipeline:
kwargs['control_images'] = [
scale_aspect_fill(img, args.width, args.height).convert("RGB") \
for img in
extract_gif_frames_from_midpoint(args.gif, fps=args.video_length, target_duration=args.video_duration)
]
kwargs['controlnet_conditioning_scale'] = args.controlnet_conditioning_scale
kwargs['control_guidance_start'] = args.control_guidance_start
kwargs['control_guidance_end'] = args.control_guidance_end
with maybe_auto_cast(autocast_type):
images = pipe(args.prompt,
negative_prompt=args.negative_prompt,
width=args.width,
height=args.height,
original_size=(args.og_width, args.og_height),
target_size=(args.target_width, args.target_height),
num_inference_steps=args.steps,
video_length=args.video_length,
generator=generator,
output_type="tensor", **kwargs).videos
images = to_pil_images(images, output_type="pil")
if args.video_length > 1:
if args.output.split(".")[-1] == "gif":
save_as_gif(images, args.output, duration=args.video_duration // args.video_length)
else:
save_as_mp4(images, args.output, duration=args.video_duration // args.video_length)
else:
images[0].save(args.output, format='JPEG', quality=95)
if __name__ == "__main__":
main()