-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
58 lines (44 loc) · 1.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Dropout, Flatten
from keras.callbacks import ModelCheckpoint
IMAGE_LENGTH = 128
EPOCH_COUNT = 12
MODEL_PATH = 'model.hdf5'
WEIGHTS_PATH = 'weights.hdf5'
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = (IMAGE_LENGTH, IMAGE_LENGTH, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Conv2D(32, (3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(Dropout(rate = 0.5))
model.add(Dense(1, activation = 'sigmoid'))
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory(
'dataset/train_set',
target_size = (IMAGE_LENGTH, IMAGE_LENGTH),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory(
'dataset/test_set',
target_size = (IMAGE_LENGTH, IMAGE_LENGTH),
batch_size = 32,
class_mode = 'binary')
checkpoint = ModelCheckpoint(WEIGHTS_PATH, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
model.fit_generator(
training_set,
epochs = EPOCH_COUNT,
validation_data = test_set,
callbacks = [checkpoint])
model.save(MODEL_PATH, True, True)