-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtesting_input .py
151 lines (112 loc) · 4.96 KB
/
testing_input .py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import division, print_function, absolute_import
import scipy
import numpy as np
import cv2
from keras.models import model_from_json
from tkinter import *
from tkinter import filedialog
from PIL import ImageTk, Image, ImageDraw
from tkinter import messagebox
import os
import PIL.ImageOps
####################################### BROWSE ###########################################
root = Tk() #interface
def browsefunc():
global filename
ftypes = [('Image file', '.jpg'), ('PNG file', '.png'), ('All files', '*')]
filename = filedialog.askopenfilename(filetypes=ftypes, defaultextension='.jpg') # stores the path of the file
global img
img = cv2.imread(filename,0)
#image is taken as input
f = Frame(root, height=200, width=400, background="white") # a frame is created for GUI
f.pack() # pack is used to display on the screen
browsebutton = Button(f, text="Browse", background="white",fg="black", command=browsefunc)
browsebutton.pack(side=LEFT) #position of the button
label = Label(root)
label.pack()
##################################### Draw the image #######################################
class ImageGenerator:
def __init__(self,parent,posx,posy,*kwargs):
self.parent = parent
self.posx = posx
self.posy = posy
self.sizex = 155
self.sizey = 275
self.b1 = "up"
self.xold = None
self.yold = None
self.drawing_area=Canvas(self.parent,width=self.sizex,height=self.sizey)
self.drawing_area.place(x=self.posx,y=self.posy)
self.drawing_area.bind("<Motion>", self.motion)
self.drawing_area.bind("<ButtonPress-1>", self.b1down)
self.drawing_area.bind("<ButtonRelease-1>", self.b1up)
self.button=Button(self.parent,text="Save",bg='white',command=self.save)
self.button.pack(side=LEFT)
self.button1=Button(self.parent,text="Clear",bg='white',command=self.clear)
self.button1.pack(side=LEFT)
self.image=Image.new("RGB",(200,200),(255,255,255))
self.draw=ImageDraw.Draw(self.image)
###################################################### saving the image ###############################
def save(self):
filename2 = filedialog.asksaveasfile()
self.image.save(filename2)
ftypes = [('Image file', '.jpg'), ('All files', '*')]
picture = filedialog.askopenfilename(filetypes=ftypes, defaultextension='.jpg')
col = Image.open(picture)
col.save("temp.jpg")
image = Image.open('temp.jpg')
inverted_image = PIL.ImageOps.invert(image)
inverted_image.save('result.jpg')
##################################################### clear the paintbox ###############################
def clear(self):
self.drawing_area.delete("all")
self.image=Image.new("RGB",(200,200),(255,255,255))
self.draw=ImageDraw.Draw(self.image)
def b1down(self,event):
self.b1 = "down"
def b1up(self,event):
self.b1 = "up"
self.xold = None
self.yold = None
def motion(self,event):
if self.b1 == "down":
if self.xold is not None and self.yold is not None:
event.widget.create_line(self.xold,self.yold,event.x,event.y,smooth='true',width=7,fill='black')
self.draw.line(((self.xold,self.yold),(event.x,event.y)),(0,0,0),width=7)
self.xold = event.x
self.yold = event.y
if __name__ == "__main__":
root.wm_geometry("%dx%d+%d+%d" % (400, 400, 10, 10))
root.config(bg='white')
ImageGenerator(root,1,1)
################################## loading model ############################################
def prediction():
json_file = open('/home/harshith/Desktop/new/lenet_model1.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
########################## loading weights ###################################################
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("/home/harshith/Desktop/new/lenet_weights1.h5")
print("Loaded model from disk")
########################## loading the image file ############################################
global img
img = cv2.resize(img,(28, 28)).astype(np.float32)
img = np.expand_dims(img, axis=0)
img = np.expand_dims(img, axis=3)
############################## Prediction ####################################################
prediction = loaded_model.predict([img])
###################################### printing output #######################################
global num
num = np.argmax(prediction)
print("The predicted number is :")
print(num)
w = Message(root, background="white", text=num)
w.pack(side=BOTTOM)
m = Message(root, background="white",text="The predicted number is:")
m.pack(side=BOTTOM)
button = Button(f, text="Prediciton", background= "white", command=prediction)
button.pack(side=LEFT)
quitButton = Button(f, text="Quit", background= "white",fg="red", command=f.quit)
quitButton.pack(side=LEFT)
root.geometry("550x550")
root.mainloop()