-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
157 lines (129 loc) · 3.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import torch
import os
import explorer
import utils
import DDPG
import random
import gym
import gym_soccer
# import predictor
from torch.utils.tensorboard import SummaryWriter
def evaluation(env, policy):
state, done = env.reset(), False
total_reward = 0
eps = 0
while eps < 200:
action = policy.select_action(state)
next_state, reward, done , _= env.step(suit_action(action))
state = next_state
total_reward += reward
if done:
state, done = env.reset(), False
eps += 1
return total_reward/200
def suit_action(action):
ret_act = np.zeros(6)
ret_act[0] = np.argmax(action[0:3])
ret_act[1:6] = action[3:8]
return ret_act
def add_on_policy_mc(transitions):
r = 0
exp_r = 0
dis = 0.99
for i in range(len(transitions)-1,-1,-1):
r = transitions[i]["reward"]+dis*r
transitions[i]["n_step"] = r
exp_r = transitions[i]["exp_reward"]+dis*exp_r
transitions[i]["exp_n_step"] = exp_r
if __name__ == "__main__":
# tensor-board
writer = SummaryWriter()
seed = 0
save_model = True
start_timesteps = 1000
batch_size = 256
file_name = "DDPG_" + "HFO_" + str(seed)
print("---------------------------------------")
print(f"Policy: DDPG, Env: HFO, Seed: {seed}")
print("---------------------------------------")
if not os.path.exists("./results"):
os.makedirs("./results")
if save_model and not os.path.exists("./models"):
os.makedirs("./models")
torch.manual_seed(seed)
np.random.seed(seed)
max_a = [1,1,1,100,180,180,100,180]
min_a = [-1,-1,-1,0,-180,-180,0,-180]
state_dim = 59
action_dim = len(max_a)
policy = DDPG.DDPG(state_dim, action_dim, max_a, min_a)
explore = explorer.explorer(state_dim, action_dim, max_a, min_a)
replay_buffer = utils.ReplayBuffer(state_dim, action_dim)
env = gym.make('Soccer-v0')
state, done = env.reset(), False
episode_reward = 0
exp_episode_reward = 0
episode_timesteps = 0
episode_num = 0
transitions = []
high_eval = 0
timestep = 0
evaluation_num = 0
dec = 1
while True:
eps_rnd = random.random()
if eps_rnd<dec or timestep < start_timesteps:
action = explore.select_action(state)
else:
action =policy.select_action(state)
next_state, reward, done ,info= env.step(suit_action(action))
if reward > 0 and dec > 0.1:
print('decreased it')
dec -= 0.001
predicted_state = explore.predict(state, action)
done_bool = float(done)
exp_reward = np.linalg.norm(np.concatenate((next_state,np.array([reward])))-predicted_state)
transitions.append({"state" : state,
"action" : action,
"next_state" : next_state,
"reward" : reward,
"exp_reward" : exp_reward,
"done" : done_bool
})
state = next_state
episode_reward += reward
exp_episode_reward += exp_reward
timestep += 1
episode_timesteps+=1
if done:
add_on_policy_mc(transitions)
for i in transitions:
replay_buffer.add(i["state"], i["action"], i["next_state"],
i["reward"], i["exp_reward"], i["n_step"],
i["exp_n_step"], i["done"])
predictor_loss = 0
if timestep >= start_timesteps:
for i in range(int(episode_timesteps/10)):
policy.train(replay_buffer, batch_size)
predictor_loss+= explore.train(replay_buffer,batch_size)[1]
writer.add_scalar("reward/episode", episode_reward, episode_num)
writer.add_scalar("predictor_loss/episode", predictor_loss, episode_num)
writer.add_scalar("exp_reward/episode",exp_episode_reward,episode_num)
state, done = env.reset(), False
episode_reward = 0
exp_episode_reward =0
transitions = []
episode_timesteps = 0
episode_num += 1
if (episode_num+1) % 500 == 0 :
evaluation_num += 1
current_eval = evaluation(env, policy)
print('evaluation : ', current_eval)
writer.add_scalar("current_eval/test_number", current_eval, evaluation_num)
if current_eval > high_eval:
policy.save('./models/model')
high_eval = current_eval
print('saved in ',episode_num)
state, done = env.reset(), False
writer.flush()