forked from microsoft/gated-graph-neural-network-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchem_tensorflow_dense.py
executable file
·284 lines (240 loc) · 13.3 KB
/
chem_tensorflow_dense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env/python
"""
Usage:
chem_tensorflow_dense.py [options]
Options:
-h --help Show this screen.
--config-file FILE Hyperparameter configuration file path (in JSON format)
--config CONFIG Hyperparameter configuration dictionary (in JSON format)
--log_dir NAME log dir name
--data_dir NAME data dir name
--restore FILE File to restore weights from.
--freeze-graph-model Freeze weights of graph model components.
"""
from typing import Sequence, Any
from docopt import docopt
from collections import defaultdict
import numpy as np
import tensorflow as tf
import sys, traceback
import pdb
import json
from chem_tensorflow import ChemModel
from utils import glorot_init
def graph_to_adj_mat(graph, max_n_vertices, num_edge_types, tie_fwd_bkwd=True):
bwd_edge_offset = 0 if tie_fwd_bkwd else (num_edge_types // 2)
amat = np.zeros((num_edge_types, max_n_vertices, max_n_vertices))
for src, e, dest in graph:
amat[e-1, dest, src] = 1
amat[e-1 + bwd_edge_offset, src, dest] = 1
return amat
'''
Comments provide the expected tensor shapes where helpful.
Key to symbols in comments:
---------------------------
[...]: a tensor
; ; : a list
b: batch size
e: number of edge types (4)
v: number of vertices per graph in this batch
h: GNN hidden size
'''
class DenseGGNNChemModel(ChemModel):
def __init__(self, args):
super().__init__(args)
@classmethod
def default_params(cls):
params = dict(super().default_params())
params.update({
'batch_size': 256,
'graph_state_dropout_keep_prob': 1.,
'task_sample_ratios': {},
'use_edge_bias': True,
})
return params
def prepare_specific_graph_model(self) -> None:
h_dim = self.params['hidden_size']
# inputs
self.placeholders['graph_state_keep_prob'] = tf.placeholder(tf.float32, None, name='graph_state_keep_prob')
self.placeholders['initial_node_representation'] = tf.placeholder(tf.float32,
[None, None, self.params['hidden_size']],
name='node_features')
self.placeholders['node_mask'] = tf.placeholder(tf.float32, [None, None], name='node_mask')
self.placeholders['num_vertices'] = tf.placeholder(tf.int32, ())
self.placeholders['adjacency_matrix'] = tf.placeholder(tf.float32,
[None, self.num_edge_types, None, None]) # [b, e, v, v]
self.__adjacency_matrix = tf.transpose(self.placeholders['adjacency_matrix'], [1, 0, 2, 3]) # [e, b, v, v]
# weights
self.weights['edge_weights'] = tf.Variable(glorot_init([self.num_edge_types, h_dim, h_dim]))
if self.params['use_edge_bias']:
self.weights['edge_biases'] = tf.Variable(np.zeros([self.num_edge_types, 1, h_dim]).astype(np.float32))
with tf.variable_scope("gru_scope"):
cell = tf.contrib.rnn.GRUCell(h_dim)
cell = tf.nn.rnn_cell.DropoutWrapper(cell,
state_keep_prob=self.placeholders['graph_state_keep_prob'])
self.weights['node_gru'] = cell
def compute_final_node_representations(self) -> tf.Tensor:
v = self.placeholders['num_vertices']
h_dim = self.params['hidden_size']
h = self.placeholders['initial_node_representation'] # [b, v, h]
h = tf.reshape(h, [-1, h_dim])
# precompute edge biases
if self.params['use_edge_bias']:
biases = [] # e ; t ; [b*v, h]
for edge_type,a in enumerate(tf.unstack(self.__adjacency_matrix, axis=0)):
summed_a = tf.reshape(tf.reduce_sum(a, axis=-1), [-1, 1]) # [b*v, 1]
biases.append(tf.matmul(summed_a, self.weights['edge_biases'][edge_type])) # [b*v, h]
with tf.variable_scope("gru_scope") as scope:
for i in range(self.params['num_timesteps']):
if i > 0:
tf.get_variable_scope().reuse_variables()
for edge_type in range(self.num_edge_types):
m = tf.matmul(h, self.weights['edge_weights'][edge_type]) # [b*v, h]
if self.params['use_edge_bias']:
m += biases[edge_type] # [b*v, h]
m = tf.reshape(m, [-1, v, h_dim]) # [b, v, h]
if edge_type == 0:
acts = tf.matmul(self.__adjacency_matrix[edge_type], m)
else:
acts += tf.matmul(self.__adjacency_matrix[edge_type], m)
acts = tf.reshape(acts, [-1, h_dim]) # [b*v, h]
h = self.weights['node_gru'](acts, h)[1] # [b*v, h]
last_h = tf.reshape(h, [-1, v, h_dim])
return last_h
def gated_regression(self, last_h, regression_gate, regression_transform):
# last_h: [b x v x h]
gate_input = tf.concat([last_h, self.placeholders['initial_node_representation']], axis = 2) # [b, v, 2h]
gate_input = tf.reshape(gate_input, [-1, 2 * self.params["hidden_size"]]) # [b*v, 2h]
last_h = tf.reshape(last_h, [-1, self.params["hidden_size"]]) # [b*v, h]
gated_outputs = tf.nn.sigmoid(regression_gate(gate_input)) * regression_transform(last_h) # [b*v, 1]
gated_outputs = tf.reshape(gated_outputs, [-1, self.placeholders['num_vertices']]) # [b, v]
masked_gated_outputs = gated_outputs * self.placeholders['node_mask'] # [b x v]
output = tf.reduce_sum(masked_gated_outputs, axis = 1) # [b]
self.output = output
return output
# ----- Data preprocessing and chunking into minibatches:
def process_raw_graphs(self, raw_data: Sequence[Any], is_training_data: bool, bucket_sizes=None) -> Any:
if bucket_sizes is None:
bucket_sizes = np.array(list(range(4, 28, 2)) + [29])
bucketed = defaultdict(list)
x_dim = len(raw_data[0]["node_features"][0])
for d in raw_data:
chosen_bucket_idx = np.argmax(bucket_sizes > max([v for e in d['graph']
for v in [e[0], e[2]]]))
chosen_bucket_size = bucket_sizes[chosen_bucket_idx]
n_active_nodes = len(d["node_features"])
bucketed[chosen_bucket_idx].append({
'adj_mat': graph_to_adj_mat(d['graph'], chosen_bucket_size, self.num_edge_types, self.params['tie_fwd_bkwd']),
'init': d["node_features"] + [[0 for _ in range(x_dim)] for __ in
range(chosen_bucket_size - n_active_nodes)],
'labels': [d["targets"][task_id][0] for task_id in self.params['task_ids']],
'mask': [1. for _ in range(n_active_nodes) ] + [0. for _ in range(chosen_bucket_size - n_active_nodes)]
})
if is_training_data:
for (bucket_idx, bucket) in bucketed.items():
np.random.shuffle(bucket)
for task_id in self.params['task_ids']:
task_sample_ratio = self.params['task_sample_ratios'].get(str(task_id))
if task_sample_ratio is not None:
ex_to_sample = int(len(bucket) * task_sample_ratio)
for ex_id in range(ex_to_sample, len(bucket)):
bucket[ex_id]['labels'][task_id] = None
bucket_at_step = [[bucket_idx for _ in range(len(bucket_data) // self.params['batch_size'])]
for bucket_idx, bucket_data in bucketed.items()]
bucket_at_step = [x for y in bucket_at_step for x in y]
return (bucketed, bucket_sizes, bucket_at_step)
def pad_annotations(self, annotations):
return np.pad(annotations,
pad_width=[[0, 0], [0, 0], [0, self.params['hidden_size'] - self.annotation_size]],
mode='constant')
def make_batch(self, elements):
batch_data = {'adj_mat': [], 'init': [], 'labels': [], 'node_mask': [], 'task_masks': []}
for d in elements:
batch_data['adj_mat'].append(d['adj_mat'])
batch_data['init'].append(d['init'])
batch_data['node_mask'].append(d['mask'])
target_task_values = []
target_task_mask = []
for target_val in d['labels']:
if target_val is None: # This is one of the examples we didn't sample...
target_task_values.append(0.)
target_task_mask.append(0.)
else:
target_task_values.append(target_val)
target_task_mask.append(1.)
batch_data['labels'].append(target_task_values)
batch_data['task_masks'].append(target_task_mask)
return batch_data
def make_minibatch_iterator(self, data, is_training: bool):
(bucketed, bucket_sizes, bucket_at_step) = data
if is_training:
np.random.shuffle(bucket_at_step)
for _, bucketed_data in bucketed.items():
np.random.shuffle(bucketed_data)
bucket_counters = defaultdict(int)
dropout_keep_prob = self.params['graph_state_dropout_keep_prob'] if is_training else 1.
for step in range(len(bucket_at_step)):
bucket = bucket_at_step[step]
start_idx = bucket_counters[bucket] * self.params['batch_size']
end_idx = (bucket_counters[bucket] + 1) * self.params['batch_size']
elements = bucketed[bucket][start_idx:end_idx]
batch_data = self.make_batch(elements)
num_graphs = len(batch_data['init'])
initial_representations = batch_data['init']
initial_representations = self.pad_annotations(initial_representations)
batch_feed_dict = {
self.placeholders['initial_node_representation']: initial_representations,
self.placeholders['target_values']: np.transpose(batch_data['labels'], axes=[1,0]),
self.placeholders['target_mask']: np.transpose(batch_data['task_masks'], axes=[1, 0]),
self.placeholders['num_graphs']: num_graphs,
self.placeholders['num_vertices']: bucket_sizes[bucket],
self.placeholders['adjacency_matrix']: batch_data['adj_mat'],
self.placeholders['node_mask']: batch_data['node_mask'],
self.placeholders['graph_state_keep_prob']: dropout_keep_prob,
}
bucket_counters[bucket] += 1
yield batch_feed_dict
def evaluate_one_batch(self, initial_node_representations, adjacency_matrices, node_masks=None):
num_vertices = len(initial_node_representations[0])
if node_masks is None:
node_masks = []
for r in initial_node_representations:
node_masks.append([1. for _ in r] + [0. for _ in range(num_vertices - len(r))])
batch_feed_dict = {
self.placeholders['initial_node_representation']: self.pad_annotations(initial_node_representations),
self.placeholders['num_graphs']: len(initial_node_representations),
self.placeholders['num_vertices']: len(initial_node_representations[0]),
self.placeholders['adjacency_matrix']: adjacency_matrices,
self.placeholders['node_mask']: node_masks,
self.placeholders['graph_state_keep_prob']: 1.0,
self.placeholders['out_layer_dropout_keep_prob']: 1.0,
}
fetch_list = self.output
result = self.sess.run(fetch_list, feed_dict=batch_feed_dict)
return result
def example_evaluation(self):
''' Demonstration of what test-time code would look like
we query the model with the first n_example_molecules from the validation file
'''
n_example_molecules = 10
with open('molecules_valid.json', 'r') as valid_file:
example_molecules = json.load(valid_file)[:n_example_molecules]
example_molecules, _, _ = self.process_raw_graphs(example_molecules,
is_training_data=False, bucket_sizes=np.array([29]))
batch_data = self.make_batch(example_molecules[0])
print(self.evaluate_one_batch(batch_data['init'], batch_data['adj_mat']))
def main():
args = docopt(__doc__)
try:
model = DenseGGNNChemModel(args)
evaluation = False
if evaluation:
model.example_evaluation()
else:
model.train()
except:
typ, value, tb = sys.exc_info()
traceback.print_exc()
pdb.post_mortem(tb)
if __name__ == "__main__":
main()