-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrestriction.tex
334 lines (305 loc) · 22 KB
/
restriction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
%!TEX root = main.tex
%
% restriction.tex
%
\chapter{Restriction}
If $f : X \to Y$ is a continuous map of topological spaces, then for every open $U \subseteq Y$ we obtain a map $f|_{f^{-1}U}:f^{-1}U \to U$. We want to generalize this notion of restriction to toposes. Note that in general, $f^{-1}U \to U$ is not surjective nor injective.
The aim is to generalize this notion of restriction to (Grothendieck or elementary) toposes.
\section{Ingredients Which Might Be Useful}
Denote by $\mathfrak{Top}$ the category whose objects are toposes and whose morphisms are geometric morphisms. In what follows, if $f : \mathscr{E} \to \mathscr{F}$ is a morphism in $\mathfrak{Top}$, we always denote the left adjoint, or inverse image part, by $f^*$ and we denote the right adjoint, or direct image part, by $f_*$.
\begin{definition} Let $f : \mathscr{E} \to \mathscr{F}$ be a morphism in $\mathfrak{Top}$. Then $f$ is called \emph{essential} if $f^*$ has a further left adjoint; always denoted by $f_!$. Thus $(f_! \dashv f^* \dashv f_*)$.
\end{definition}
\begin{definition}
Let $f : \mathscr{E} \to \mathscr{F}$ be a morphism in $\mathfrak{Top}$. We say that $f$ is \emph{injective}, or an \emph{embedding}, or an \emph{inclusion} if $f^*$ is fully faithful.
We say that $f$ is a \emph{surjection} if $f_*$ is faithful.
\end{definition}
\begin{proposition}
Let $L \dashv R$ be an adjoint functor pair. Let $\eta : 1 \to RL$ be the unit and $\varepsilon : LR \to 1$ be the counit. Then the following holds.
\begin{enumerate}
\item $R$ is faithful $\iff \varepsilon_x$ is an epimorphism for all objects $x$.
\item $R$ is full $\iff \varepsilon_x$ is a split monomorphism for all objects $x$.
\item $R$ is fully faithful $\iff \varepsilon_x$ is an isomorphism for all objects $x$.
\end{enumerate}
\end{proposition}
\begin{proof}
Since $L \dashv R$, for each pair of objects $x,y$ there is a natural bijection
\[ \varphi = \varphi_{x,y} : \Hom(Lx,y) \to \Hom(x,Ry). \]
Moreover we have a map
\[ \psi = \psi_{x,y} : \Hom(x,y) \to \Hom(Rx,Ry), \qquad f \mapsto Rf. \]
Thus we have a composition
\[ \Hom(x,y) \xrightarrow{\psi_{x,y}} \Hom(Rx,Ry) \xrightarrow{\varphi_{Rx,y}^{-1}} \Hom(LRx,y). \]
Now fix $x$. Then for each object $y$,
\[ \varphi^{-1}_{Rx,y} \circ \psi_{x,y} = \Hom(\varepsilon_x,y) : \Hom(x,y) \to \Hom(LRx,y), \qquad f \mapsto f \circ \varepsilon_x. \]
Now $R$ is faithful $\iff \psi_{x,y}$ is injective for all $x,y \iff \Hom(\varepsilon_x,y)$ is a split monomorphism for all $x,y \iff \varepsilon_x$ is a split monomorphism for all $x$, by Yoneda. Dually, $R$ is full $\iff \varepsilon_x$ is an epimorphism for all $x$. Finally, split mono $+$ epi $\implies$ iso and if $\varepsilon_x$ is an isomorphism, then $R$ is fully faithful by the $2$-out-of-$3$ property for isomorphisms.
\end{proof}
\begin{proposition}
Let $L \dashv R$ be an adjoint functor pair. Let $\eta : 1 \to RL$ be the unit and $\varepsilon : LR \to 1$ be the counit. The following are equivalent.
\begin{enumerate}
\item $L$ is faithful.
\item $\eta_x$ is a monomorphism for all objects $x$.
\end{enumerate}
\end{proposition}
\begin{proof}
Since $L \dashv R$, for each pair of objects $x,y$ there is a natural bijection
\[ \varphi = \varphi_{x,y} : \Hom(Lx,y) \to \Hom(x,Ry). \]
Moreover we have a map
\[ \psi = \psi_{x,y} : \Hom(x,y) \to \Hom(Lx,Ly), \qquad f \mapsto Lf. \]
Thus we have a composition
\[ \Hom(x,y) \xrightarrow{\psi_{x,y}} \Hom(Lx,Ly) \xrightarrow{\varphi_{x,Ly}} \Hom(x,RLy). \]
Now fix $y$. Then for each object $x$,
\[ \varphi_{x,Ly} \circ \psi_{x,y} = \Hom(x, \eta_y) : \Hom(x,y) \to \Hom(x, RLy), \qquad f \mapsto \eta_y \circ f. \]
Now $L$ is faithful $\iff \psi_{x,y}$ is injective for all $x,y \iff \Hom(x,\eta_y)$ is a monomorphism for all $x,y \iff \eta_y$ is a monomorphism for all $y$, by Yoneda.
\end{proof}
\begin{lemma}
Let $\phi_! \dashv \phi^* \dashv \phi_*$ be a triple of adjoint functors. Then the unit $1 \to \phi^* \phi_!$ of the first adjunction is an isomorphism if and only if the counit $\phi^* \phi_* \to 1$ of the second adjunction is an isomorphism. Hence $\phi_*$ is fully faithful if and only if $\phi_!$ is.
\end{lemma}
\begin{proof}
\cite{MacLaneMoerdijk91}, Lemma VII.4.1.
\end{proof}
\begin{corollary}
Let $(f^* \dashv f_*) = f : \mathscr{E} \to \mathscr{F}$ be a geometric morphism with unit $\eta$ and counit $\varepsilon$. Then the following holds.
\begin{enumerate}
\item $f$ is injective iff $\eta_x$ is a monomorphism for all $x \in \mathscr{E}$.
\item $f$ is surjective iff $\varepsilon_x$ is an isomorphism for all $x \in \mathscr{E}$.
\item If $f$ is essential with further left adjoint $f_!$, then $f$ is surjective iff the unit $1 \to f^* f_!$ is an isomorphism.
\end{enumerate}
\end{corollary}
\begin{definition}
Call a monic $m$ the \emph{image} of the arrow $f$ in $\mathscr{E}$ if $f$ factors through $m$, say as $f = me$ for some $e$ and if, whenever $f$ factors through a monic $h$, so does $m$.
\end{definition}
This says in effect that $m$ is the smallest subobject of the codomain of $f$ through which $f$ can factor.
\begin{theorem}[Internal Factorization Theorem]
\label{internal factorization}
Let $\mathscr{E}$ be a topos. Then every morphism $f : x \to y$ in $\mathscr{E}$ factors as $f = me$, where $m$ is the image of $f$ (see definition above) and $e$ an epimorphism. Moreover this decomposition is unique up to isomorphism.
\end{theorem}
\begin{proof}
\cite{MacLaneMoerdijk91}, Proposition IV.6.1 and IV.6.2. What you do is you take the cokernel pair of $f$ with itself. That is, the pushout of $f$ with itself.
\end{proof}
\begin{theorem}[External Factorization Theorem]
\label{external factorization}
Let $f = \mathscr{E} \to \mathscr{F}$ be a morphism in $\mathfrak{Top}$. Then there exists a topology $j$ on $\mathscr{F}$ for which $f$ factors through the embedding $i : \Sh_j \mathscr{F} \to \mathscr{F}$ by a surjection $p$:
\[ \begin{tikzcd}
\mathscr{E} \arrow[rr, "f"] \arrow[dr, swap, two heads, "p"] & & \mathscr{F} \\
& \Sh_j \mathscr{F} \arrow[ur, swap, hook, "i"]
\end{tikzcd} \]
Moreover, this factorization exists and is unique up to equivalence of categories, and every other factorization factors through this one.
\end{theorem}
\begin{proof}
\cite{MacLaneMoerdijk91}, Theorem VII.4.6, Corollary VII.4.7 and Theorem VII.4.8. The proof is about 4 pages long.
\end{proof}
\section{Approach One}
Let $f : \mathscr{E} \to \mathscr{F}$ be a morphism in $\mathfrak{Top}$.
Fix an object $A \in \mathscr{F}$. Let $(f^* \dashv f_*)$ be the adjoint functor pair corresponding to $f$. Note that $\mathscr{F}/A$ is a topos, as well as $\mathscr{E}/f^*A$. We want to define a geometric morphism
\[ \mathscr{E}/f^*A \to \mathscr{F}/A. \]
Thus we need to supply a pair of adjoint functors such that the left adjoint is also left-exact.
Given an object $(B \to A) \in \mathscr{F}/A$, we can send it to $f^*(B\to A) = (f^*B \to f^*A) \in \mathscr{E}/f^*A$, no problems there.
Given an object $(B \xrightarrow{x} f^*A) \in \mathscr{E}/f^*A$, the only thing we can do is send it to $f_*(B \xrightarrow{x} f^*A) = f_*B \xrightarrow{f_*(x)} f_* f^*A$. We have a morphism coming from the unit of the adjunction $\eta_A : A \to f_* f^* A$. Together with $f_*B \to f_* f^*A$, form the pullback:
\[
\begin{tikzcd}
P \arrow[r, "p_1"] \arrow[d, swap, "p_2"] & f_*B \arrow[d, "f_*(x)"] \\
A \arrow[r, swap, "\eta_A"] & f_*f^*A
\end{tikzcd}\]
Since the pullback only depends on the morphism $x$ (the geometric morphism $f$ and the object $A$ are fixed), we will denote it by $P(x) := P$. The morphism $p_2$ from the pullback only depends on $x$, too, so we will denote it by $p(x) := p_2$.
Thus we have found two functors
\[ \begin{tikzcd} \mathscr{E} / f^*A \arrow[r, bend left, "f_*/A"] & \mathscr{F}/A \arrow[l, bend left, "f^*/A"] \end{tikzcd} \]
defined on objects by
\[ \left( f_*/A \right) \left(B \xrightarrow{x} f^*A \right) = \left( P(x) \xrightarrow{p(x)} A \right) \]
and
\[ \left(f^*/A \right) \left( B \xrightarrow{x} A \right) = \left( f^*B \xrightarrow{f^*(x)} f^*A \right). \]
What $f^*/A$ does on morphisms is clear. What $f_*/A$ does on morphisms could use more exposition. Given a morphism
\[ \begin{tikzcd}
B \arrow[rr, "z"] \arrow[dr, swap, "x"] & & C \arrow[dl, "y"] \\
& f^*A &
\end{tikzcd} \]
in $\mathscr{E}/f^*A$, we obtain two pullbacks
\[\begin{tikzcd}
P(x) \arrow[r, "p_1"] \arrow[d, swap, "p(x)"] & f_*B \arrow[d, "f_*(x)"] \arrow[rr, bend left, "f_*(z)"] & P(y) \arrow[r, "q_1"] \arrow[d, swap, "p(y)"] & f_*C \arrow[d, "f_*(y)"] \\
A \arrow[r, swap, "\eta_A"] & f_*f^*A & A \arrow[r, swap, "\eta_A"] & f_*f^*A
\end{tikzcd}\]
We know that $f_*(x) = f_*(yz) = f_*(y) f_*(z)$. From the universal property of the pullback, we obtain a (unique) morphism
\[\begin{tikzcd}
P(x) \arrow[dr, dotted, "\exists! w"] \arrow[ddr, bend right, swap, "p(x)"] \arrow[drr, bend left, "f_*(z) \circ p_1"] \\
& P(y) \arrow[r, "q_1"] \arrow[d, swap, "p(y)"] & f_*C \arrow[d, "f_*(y)"] \\
& A \arrow[r, swap, "\eta_A"] & f_*f^*A
\end{tikzcd}\]
such that $p_2 = q_2 \circ w$ and $f_*(z) \circ p_1 = q_1 \circ w$. The induced morphism $w$ depends only on the morphism $z$, so we will denote it by $p(z) := w$. We define $(f_*/A)(z) = p(z)$.
We should check wether $\left( f^*/A \dashv f_*/A \right)$ and wether $f^*/A$ is left exact. To check wether $\left( f^*/A \dashv f_*/A \right)$, we need to find a unit
\[ \alpha : 1 \to \left(f_*/A\right) \circ \left( f^*/A \right) \]
and a counit
\[ \beta : \left( f^*/A \right) \circ \left( f_*/A \right) \to 1 \]
such that they satisfy the zigzag identities.
Given an object $(B \xrightarrow{x} A) \in \mathscr{F}/A$, form the pullback from $f_*/A$ again, on the object $(f^*B \xrightarrow{f^*(x)} f^*A)$:
\[\begin{tikzcd}
B \arrow[dr, dotted, "\exists! b"] \arrow[ddr, bend right, swap, "x"] \arrow[drr, bend left, "\eta_B"] \\
& P\left(f^*x\right) \arrow[r, "p_1"] \arrow[d, swap, "p\left(f^*x\right)"] & f_*f^*B \arrow[d, "f_*f^*(x)"] \\
& A \arrow[r, swap, "\eta_A"] & f_*f^*A
\end{tikzcd}\]
where $\eta_B : B \to f_* f^* B$ is the unit of $(f^* \dashv f_*)$. The morphism $b : B \to P(f^*x)$ depends only on the morphism $x$, so we denote it by $a(x) := b$. We set $\alpha_B := a(x)$.
Given an object $(B \xrightarrow{x} f^*A) \in \mathscr{E}/f^*A$, application of $f_*/A$ gives us $\left(P(x) \xrightarrow{p(x)} A \right) \in \mathscr{F}/A$, coming from the pullback
\[\begin{tikzcd}
P(x) \arrow[r, "p_1"] \arrow[d, swap, "p(x)"] & f_*B \arrow[d, "f_*x"] \\
A \arrow[r, swap, "\eta_A"] & f_*f^*A
\end{tikzcd}\]
Application of $f^*$ to this pullback diagram gives us
\[\begin{tikzcd}
f^*P(x) \arrow[rr, "f^*p_1"] \arrow[dd, swap, "f^*p(x)"] & & f^*f_*B \arrow[dd, "f^*f_*x"] \arrow[dl, swap, "\varepsilon_B"] \\
& B & \\
f^*A \arrow[rr, swap, "f^*\eta_A"] & & f^*f_*f^*A
\end{tikzcd}\]
where $\varepsilon_B : f^*f_*B \to B$ is the counit of $(f^* \dashv f_*)$. We set $\beta_B := \varepsilon_B \circ f^*p_1$. Let us check wether $\alpha$ and $\beta$ satisfy the zigzag identities. So we need to check wether
\[\begin{tikzcd}
asdf
\end{tikzcd}\]
\section{Generalization of This Construction}
Let
\[\begin{tikzcd}
\mathcal{D} \arrow[r, bend left, "R"] & \mathcal{C} \arrow[l, bend left, "L"]
\end{tikzcd}\]
be two adjoint functors; $(L \dashv R)$. Suppose that $\mathcal{C}$ has pullbacks. Fix an object $X \in \mathcal{C}$. Define two functors
\[\begin{tikzcd}
\mathcal{D}/LX \arrow[r, bend left, "R/X"] & \mathcal{C}/X \arrow[l, bend left, "L/X"]
\end{tikzcd}\]
as follows. Given an object $ a \in \mathcal{C}/X$, where $a : A \to X$, define
\[ \left(L/X\right)(a) := La = \left( LA \xrightarrow{La} LX \right) \in \mathcal{D}/LX. \]
Given a morphism $f : a \to b$ in $\mathcal{C}/X$, where
\[\begin{tikzcd}
A \arrow[rr, "f"] \arrow[dr, swap, "a"] & & B \arrow[dl, "b"] \\
& X &
\end{tikzcd}\]
define
\[ \left(L/X\right)(f) := Lf = \begin{tikzcd} LA \arrow[rr, "Lf"] \arrow[dr, swap, "La"] & & LB \arrow[dl, "Lb"] \\ & LX & \end{tikzcd} \in \mathcal{D}/LX \]
This was the easy part. Let us define $R/X$. Given an object $a \in \mathcal{D}/LX$, where $a : A \to LX$, we have a pullback diagram in $\mathcal{C}$:
\[\begin{tikzcd}
RA \times_{Ra} X \arrow[r, "\pi_{\eta,a}"] \arrow[d, swap, "\pi_a"] & RA \arrow[d, "Ra"] \\
X \arrow[r, swap, "\eta_X"] & RLX
\end{tikzcd}\]
where $\eta : 1 \to RL$ is the unit of the adjunction $(L \dashv R)$. We use the notation $RA \times_{Ra} X$ for the pullback to indicate the (only) dependence on the morphism $a : A \to LX$. We define
\[ \left( R/X \right)(a) := \pi_a = \left(RA \times_{Ra} X \xrightarrow{\pi_a} X \right) \in \mathcal{C}/X. \]
Given a morphism $f : a \to b$ in $\mathcal{D}/LX$, where
\[\begin{tikzcd}
A \arrow[rr, "f"] \arrow[dr, swap, "a"] & & B \arrow[dl, "b"] \\
& LX &
\end{tikzcd} \]
we form two pullbacks in $\mathcal{C}$:
\[\begin{tikzcd}
RA \times_{Ra} X \arrow[r, "\pi_{\eta,a}"] \arrow[d, swap, "\pi_a"] & RA \arrow[d, "Ra"] \arrow[rr, bend left, "Rf"] & RB \times_{Rb} X \arrow[r, "\pi_{\eta,b}"] \arrow[d, swap, "\pi_b"] & RB \arrow[d, "Rb"] \\
X \arrow[r, swap, "\eta_X"] & RLX & X \arrow[r, swap, "\eta_X"] & RLX
\end{tikzcd}.\]
We know that $Ra = (Rb)(Rf)$. From the universal property of the pullback, we obtain a unique morphism
\[\begin{tikzcd}
RA \times_{Ra} X \arrow[dr, dotted, "\exists! \pi_f"] \arrow[ddr, bend right, swap, "\pi_a"] \arrow[drr, bend left, "Rf \circ \pi_{\eta,a}"] \\
& RB \times_{Rb} X \arrow[r, "\pi_{\eta,b}"] \arrow[d, swap, "\pi_b"] & RB \arrow[d, "Rb"] \\
& X \arrow[r, swap, "\eta_X"] & RLX
\end{tikzcd}\]
because $(Rb)(Rf)(\pi_{\eta,a}) = (Ra)\pi_{\eta,a} = \eta_X \pi_a$. We define
\[ \left( R/X \right)(f) := \pi_f = \begin{tikzcd}
RA \times_{Ra} X \arrow[rr, "\pi_f"] \arrow[dr, swap, "\pi_a"] & & RB \times_{Rb} X \arrow[dl, "\pi_b"] \\
& X &
\end{tikzcd}. \]
This is well-defined, because $\pi_a = \pi_b \pi_f$ from the pullback.
\begin{proposition}
\label{restriction adjoint pair}
The induced functors $L/X$ and $R/X$ form an adjoint pair: $(L/X \dashv R/X)$.
\end{proposition}
\begin{proof}
Let $\eta : 1_{\mathcal{C}} \to RL$ be the unit of $(L \dashv R)$ and let $\varepsilon : LR \to 1_{\mathcal{D}}$ be the counit. Here $1_{\mathcal{C}}$ denotes the identity functor on $\mathcal{C}$ and $1_{\mathcal{D}}$ denotes the identity functor on $\mathcal{D}$. We want to find two natural transformations
\[ \alpha : 1_{\mathcal{C}/X} \to (R/X) \circ (L/X), \qquad \beta : (L/X) \circ (R/X) \to 1_{\mathcal{D}/LX} \]
that satisfy the ``unit-counit triangle'' identities. That is, for every object $a \in \mathcal{C}/X$ and for every object $b \in \mathcal{D}/LX$, we require that the diagrams
\[ \begin{tikzcd}[column sep=5em,row sep=2em]
(L/X)(a) \arrow[r, "(L/X)(\alpha_a)"] \arrow[dr, equal] & (L/X) (R/X) (L/X) (a) \arrow[d, "\beta_{(L/X)(a)}"] \\
& (L/X)(a)
\end{tikzcd} \]
and
\[ \begin{tikzcd}[column sep=5em,row sep=2em]
(R/X)(b) \arrow[r, "\alpha_{(R/X)(b)}"] \arrow[dr, equal] & (R/X) (L/X) (R/X) (b) \arrow[d, "(R/X)\beta_b"] \\
& (R/X)(b)
\end{tikzcd} \]
commute. Given such an object $a \in \mathcal{C}/X$, where $a : A \to X$, form the pullback in $\mathcal{C}$ from $R/X$ again on the object $La$:
\[\begin{tikzcd}
A \arrow[dr, dotted, "\exists! p_a"] \arrow[ddr, bend right, swap, "a"] \arrow[drr, bend left, "\eta_A"] \\
& RLA \times_{RLa} X \arrow[r, "\pi_{\eta,La}"] \arrow[d, swap, "\pi_{La}"] & RLA \arrow[d, "RLa"] \\
& X \arrow[r, swap, "\eta_X"] & RLX
\end{tikzcd}.\]
We see that, since $\eta$ is a natural transformation, $RLa \circ \eta_A = \eta_X \circ a$. Hence there exists a unique morphism $p_a : A \to RLA \times_{RLa} X$, in $\mathcal{C}$, such that $a = \pi_{La} \circ p_a$ and $\eta_A = \pi_{\eta,La} \circ p_a$. We define the natural transformation $\alpha$ as $\alpha_a := p_a$, for each object $a \in \mathcal{C}/X$.
On the other hand, given an object $b \in \mathcal{D}/LX$, where $b : B \to LX$, form the pullback from $R/X$ again and apply $L$ afterwards:
\[\begin{tikzcd}
L\left(RB \times_{Rb} X\right) \arrow[rr, "L \pi_{\eta,b}"] \arrow[dd, swap, "L\pi_b"] & & LRB \arrow[dd, "LRb"] \arrow[dl, dotted, swap, "\varepsilon_B"] \\
& B \arrow[dl, dotted, swap, "b"] & \\
LX \arrow[rr, swap, "L\eta_X"] & & LRLX
\end{tikzcd}\]
where $\varepsilon_B$ is coming from the counit of $(L \dashv R)$.
This diagram might not be a pullback anymore, since $L$ is not necessarily left exact, although the outer rectangle still commutes. We define $\beta_b := \varepsilon_B \circ L\pi_{\eta,b}$, for each object $b \in \mathcal{D}/LX$.
We will now check wether $\alpha$ and $\beta$ are in fact natural transformations.
So let $f : a \to b$ be a morphism in $\mathcal{C}/X$, where $a : A \to X$, $b : B \to X$, $f : A \to B$ in $\mathcal{C}$ and $a = b \circ f$ in $\mathcal{C}$. Then we need to check if the diagram
\[\begin{tikzcd}
a \arrow[r, "f"] \arrow[d, swap, "\alpha_a"] & b \arrow[d, "\alpha_b"] \\
\pi_{La} \arrow[r, swap, "\pi_{Lf}"] & \pi_{Lb}
\end{tikzcd}\]
commutes in $\mathcal{C}/X$.
Unraveling what this means, we need to show that the upper left rectangle in the diagram
\[\begin{tikzcd}
A \arrow[r, "f"] \arrow[d, swap, "p_a"] & B \arrow[d, "p_b"] \arrow[dr, "\eta_B"] \\
RLA \times_{RLa} X \arrow[r, swap, "\pi_{Lf}"] \arrow[dr, swap, "\pi_{La}"] & RLB \times_{RLb} X \arrow[d, "\pi_{Lb}"] \arrow[r, swap, "\pi_{\eta,Lb}"] & RLB \arrow[d, "RLb"] \\
& X \arrow[r, swap, "\eta_X"] & RLX
\end{tikzcd}\]
commutes in $\mathcal{C}$. Since $\eta$ is a natural transformation, there exists a unique mediating morphism $\partial : A \to RLB \times_{RLb} X$ coming from the universal property of the pullback $RLB \times_{RLb} X$.
The morphism $\partial$ is such that
\begin{align*}
\eta_B f &= \pi_{\eta,Lb} \partial, \\
\pi_{La} p_a &= \pi_{Lb} \partial.
\end{align*}
But since both $p_b$ and $\pi_{Lf}$ posess a universal property with respect to $RLB \times_{RLb} X$, we must have
\[ \pi_{Lf} p_b = \partial = p_a f. \]
Now let $f : a \to b$ be a morphism in $\mathcal{D}/LX$, where $a : A \to LX$, $b : B \to LX$ and $f:A \to B$ in $\mathcal{D}$ and $a = b \circ f$. Then we need to check if the diagram
\[\begin{tikzcd}
L\pi_a \arrow[r, "L\pi_f"] \arrow[d, swap, "\beta_a"] & L\pi_b \arrow[d, "\beta_b"] \\
a \arrow[r, swap, "f"] & b
\end{tikzcd}\]
commutes in $\mathcal{D}/LX$. Unraveling what this means, we need to show that the diagram
\[ \begin{tikzcd}
L\left(RA \times_{Ra} X\right) \arrow[r, "L\pi_f"] \arrow[d, swap, "\varepsilon_A \circ L\pi_{\eta,a}"] & L \left( RB \times_{Rb} X \right) \arrow[d, "\varepsilon_B \circ L \pi_{\eta,b}"] \\
A \arrow[r, swap, "f"] & B
\end{tikzcd} \]
commutes in $\mathcal{D}$. This is a chain of straightforward substitutions from what we know:
\begin{align*}
\varepsilon_B L\pi_{\eta,b} L\pi_f &= \epsilon_B L \left( \pi_{\eta,b} \pi_f \right)& & \\
&= \varepsilon_B L \left((Rf)\pi_{\eta,a} \right) &\text{because $\pi_f$ is a mediating morphism}& \\
&= \varepsilon_B (LRf) L\pi_{\eta,a} & &\\
&= f \varepsilon_A L\pi_{\eta,a} & \text{because $\varepsilon$ is a natural transformation.} &
\end{align*}
So we conclude that $\alpha$ and $\beta$ are natural transformations.
We will now check the triangle identities. In effect, we need to check for every $a : A \to X$ in $\mathcal{C}$ if the composition
\[ \begin{tikzcd} LA \arrow[r, "L\alpha_a"] & L\left(RLA \times_{RLa} X \right) \arrow[r, "\beta_{LA}"] & LA \end{tikzcd} \]
is equal to $L(1_A)$. But this is straightforward:
\[ \beta_{LA} L\alpha_a = \varepsilon_{LA} L\pi_{\eta,La} Lp_a = \varepsilon_{LA} L \left( \pi_{\eta,La} p_a \right) = \varepsilon_{LA} L \eta_A = L\left(1_A \right). \]
In the last equality, we use that $\eta$ and $\varepsilon$ satisfy the triangle identities. Now if $b : B \to LX$ is an object in $\mathcal{D}/LX$, we need to check if the composition
\[ \begin{tikzcd} RB \times_{Rb} X \arrow[r, "\alpha_{\pi_b}"] & \left(RL\left(RB \times_{Rb} X \right)\right) \times_{L\pi_{b}} X \arrow[r, "(R/X)\beta_{b}"] & RB \times_{Rb} X \end{tikzcd} \]
is equal to $(R/X)(1_B) = 1_{RB \times_{Rb} X}$.
\end{proof}
\begin{lemma}
\label{left exact restriction}
If $L : \mathcal{C} \to \mathcal{D}$ is a left exact functor, then so is $L/X : \mathcal{C}/X \to \mathcal{D}/LX$ for every object $X \in \mathcal{C}$.
\end{lemma}
\begin{proof}
It suffices to show that $L/X$ preserves the terminal object $1_X$ and preserves pullbacks. Clearly $(L/X)(1_X) = 1_{LX}$, which is the terminal object in $\mathcal{D}/LX$. Pullbacks in $\mathcal{C}/X$ are pullbacks over $X$ in $\mathcal{C}$ and $L$ preserves them. So $L/X$ preserves pullbacks too.
\end{proof}
\begin{proposition}
Let $f : \mathscr{E} \to \mathscr{F}$ be a geometric morphism between toposes. Then for every object $U \in \mathscr{F}$, we have an induced geometric morphism $f|_U : \mathscr{E}/f^*U \to \mathscr{F}/U$, called restriction, defined by
\begin{align*}
\left(f|_U\right)^* \left( A \xrightarrow{a} U \right) &= f^*A \xrightarrow{f^*a} f^*U, \\
\left(f|_U\right)_*(B \xrightarrow{b} f^*U) &= f_*B \times_{f_*b} U \xrightarrow{\pi_b} U,
\end{align*}
where the morphism $\pi_b$ is defined as in (\ref{restriction adjoint pair}).
\end{proposition}
\begin{example}
Let $f : X \to Y$ be a continuous map of topological spaces. Choose an open subset $U \subseteq Y$. The Yoneda functor $h_U = \Hom(\cdot, U)$ is a sheaf on $Y$; it is a subobject of the terminal sheaf $\Hom(\cdot, Y)$ on $Y$. I claim that $\Sh(U) \cong \Sh(Y) / h_U$, an equivalence of categories. Indeed, if $F \in \Sh(U)$ is a sheaf on $U$, there is always a morphism of sheaves $F \to h_U$ since $h_U$ is terminal in $\Sh(U)$. Hence we obtain a functor $\Sh(U) \to \Sh(Y)/h_U$. On the other hand, given an object $F \to h_U$ in $\Sh(Y)/h_U$, we have an obvious forgetful functor forgetting the sheaf morphism to $h_U$. This functor is well-defined because $F$ has no support outside $U$.
From the continuous map $f$ we obtain a geometric morphism of toposes
\[ f : \Sh(X) \to \Sh(Y) \]
where the inverse image part is defined by $(f^*F)(V) = \colim_{W \supseteq f(V)} F(W)$ and the direct image part is defined by $(f_*F)(V) = F(f^{-1}(V))$. Observe that
\[ (f^*h_U)(V) = \colim_{W \supset f(V)} h_U(W) = \colim_{W \supset f(V)} \left\{ \begin{array}{ll} 1,& \text{ if $W \subseteq U$}, \\ \emptyset,& \text{ if not}. \end{array} \right. \]
\[ = h_{f^{-1}U}. \]
So we obtain a geometric morphism
\[ f|_U : \Sh(X) / h_{f^{-1}U} \to \Sh(Y) / h_U. \]
On the other hand, we can just as well consider
\[ f|_U : \Sh\left(f^{-1}U \right) \to \Sh(U). \]
\end{example}