-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresentation.tex
305 lines (267 loc) · 23.8 KB
/
presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
%
% presentation.tex
%
\input{config}
\begin{document}
Let $\mathbf{C} \in \mathbf{Cat}$. Recall the nerve and geometric realization.
Write $X_\mathbf{C} = |N\mathbf{C}|$.
\begin{question*}
\label{eq:intro-question}
For which (connected) categories $\mathbf{C} \in \mathbf{Cat}$ does there exist a geometric morphism
\[
\Sh(X_{\mathbf{C}}) \to \mathbf{Set}^{\mathbf{C}^{op}}
\]
which induces an isomorphism of profinite groups
\[ \widehat{\pi}_1(|N\mathbf{C}|, |p|) \cong \pi_1\left(\mathbf{Set}^{\mathbf{C}^{op}}, p \right)\; ? \]
\end{question*}
\begin{definition*}
\index{McCord space}
\label{def:star sieve}
Let $\mathbf{C}$ be a category, $N \mathbf{C}$ the simplicial nerve and $X_\mathbf{C} = |N \mathbf{C} |$. Let $\mathbf{C}/A$ be the slice category over $A$. Write $D_f$ for the domain of a morphism $f$. We define the \emph{McCord space} of $A$ to be the topological space
\[ \ST(A) := \left(\bigsqcup_{f \in \mathbf{C}/A} D_f^* \right) / \sim. \]
Elements of the coproduct $\bigsqcup D_f^*$ may be denoted as tuples $(f,p)$ where $f : D_f \to A$ is an object of the slice category $\mathbf{C}/A$ and $p \in D_f^* \subset X_{\mathbf{C}}$.
Let $\rhd$ be the binary relation defined by $(f,p) \rhd (g,q) \iff p = q$ in $X_{\mathbf{C}}$ and there exists a morphism $h : f \to g$ in $\mathbf{C}/A$ and there exists an $n$-simplex $\sigma \in \st(h)$ such that $p \in \Int(\sigma)$.
This relation is reflexive, but in general neither symmetric nor transitive. Let $\sim$ be the smallest equivalence relation generated by $\rhd$.
\end{definition*}
Define a map of sets
\[ e_A : \ST(A) \to X_{\mathbf{C}}, \qquad [f,p] \mapsto p. \]
\begin{definition*}
Let $f : A \to B$ be a morphism in $\mathbf{C}$. Then we have a functor $\mathbf{C}/f : \mathbf{C}/A \to \mathbf{C}/B$ given by sending an object $g \in \mathbf{C}/A$ to the composition $f \circ g$. Define a map $\mu(f) : \mu(A) \to \mu(B)$ as sending an equivalence class $[g,p] \in \mu(A)$ to the equivalence class $[f \circ g, p]$.
\end{definition*}
\begin{corollary*}
\label{coro:we have a McCord functor}
\index{McCord functor}
$\ST : \mathbf{C} \to \mathbf{LH}/X_{\mathbf{C}}$ is a functor.
\end{corollary*}
\begin{definition*}
\label{def:support at a point}
Let $p \in X_\mathbf{C}$. We define the \emph{support} of $p$ to be the full subcategory of $\mathbf{C}$ given by
\[ \mathbf{C}(p) := \left(\begin{array}{c} A \in \mathbf{C} : p \in A^* \\ + \\ \text{morphisms from $\mathbf{C}$} \end{array} \right). \]
\end{definition*}
\begin{theorem*}
\label{thm:mccord functor generalizes the mccord map}
Let $\mathbf{C}$ be a finite $T_0$-space, or equivalently a finite poset. For each $x \in \mathbf{C}$, denote its minimal open set around $x$ by $U_x$. Then there is a natural homeomorphism
\[ \ST(x) \cong \mu_\mathbf{C}^{-1}(U_x). \]
\end{theorem*}
\begin{proof}
I claim that the etale map $e_x : \ST(x) \to X_\mathbf{C}$ has a section on $\mu_\mathbf{C}^{-1}(U_x) \subset X_\mathbf{C}$. Take a point $p \in \mu_\mathbf{C}^{-1}(U_x)$. Write $M_p = \min \mathbf{C}(p)$.
Then $M_p \in U_x$, so $M_p \leq x$. Write $u : M_p \to x$ for the unique morphism. We now have $[u,p] \in \ST(x)$.
Define
\[ s_x : \mu_\mathbf{C}^{-1}(U_x) \to \ST(x) \]
by sending the point $p$ to $[u,p]$. The definition of $s_x$ is unambiguous, because there is only one choice for $u$. Clearly we have $e_x \circ s_x = \id_{\mu_{\mathbf{C}}^{-1}\left(U_x \right)}$. So $s_x$ is a section. We shall now prove that $s_x \circ e_x = \id_{\ST(x)}$. Take $[g,p] \in \ST(x)$ and suppose that $(s_x \circ e_x)([g,p]) = [u,p]$. We want to show that $[g,p] = [u,p]$. Note that $g : D_g \to x$ is unique. Moreover, $D_g \in \mathbf{C}(p)$, so $M_p \leq D_g$. Let $h : M_p \to D_g$ be the unique morphism. Again by uniqueness, $h \circ g = u$. We now have a morphism $h : g \to u$ in $\mathbf{C}/x$, and $(g,h) \in \st(h)$ with $p \in \Int(g,h)$. So $[g,p] = [u,g]$.
\end{proof}
\begin{definition*}
\label{def:alexandroff cat}
We say $\mathbf{C}$ is an \emph{Alexandroff} category if for all $p \in X_{\mathbf{C}}$
\begin{enumerate}
\item the support $\mathbf{C}(p)$ is totally ordered with a (unique) minimal element $M_p$, and
\item for every $A \in \mathbf{C}$ and for every $[f,p] \in e_A^{-1}(p)$ there exists a unique morphism $m : M_p \to D_f$ with the property that there is an $n$-simplex $\sigma \in \st(m)$ with $p \in \Int(\sigma)$.
\end{enumerate}
\end{definition*}
\begin{definition*}
\label{def:well-fibered}
We say that $\mathbf{C}$ is \emph{well-fibered} if for all $p \in X_\mathbf{C}$ there exists an object $B \in \mathbf{C}$ such that $p^* \circ \ST \cong \Hom_\mathbf{C}(B,-)$.
\end{definition*}
\begin{lemma*}
\label{lem:alexandroff implies well-fibered}
If $\mathbf{C}$ is Alexandroff, then it is well-fibered.
\end{lemma*}
\begin{proof}
Let $p \in X_{\mathbf{C}}$. The claim is that $p^* \circ \ST \cong \Hom_{\mathbf{C}}(M_p,-)$, where $M_p$ is defined as in \cref{def:alexandroff cat}. In other words, we need to find a natural isomorphism $\alpha : p^* \circ \ST \to \Hom_{\mathbf{C}}\left(M_p,-\right)$. To that end, define $\beta : \Hom_{\mathbf{C}}\left( M_p, - \right) \to p^* \circ \ST$ as follows. For each component $A \in \mathbf{C}$, we set
\[ \beta_A : \Hom_{\mathbf{C}}\left(M_p,A \right) \to e^{-1}_A\left(p \right), \qquad h \mapsto [h,p]. \]
Then naturality of $\beta$ is clear. The natural transformation $\beta$ will be the inverse for the natural transformation $\alpha$. For the natural transformation $\alpha$, define it as follows.
Take $[g,p] \in e^{-1}_A(p)$.
Then $g : D_g \to A$ and $p \in D_g^*$.
So $D_g \in \mathbf{C}(p)$. Since $\mathbf{C}$ is Alexandroff, there exists a unique morphism $m : M_p \to D_g$ with the property that there is some $\sigma \in \st(m)$ such that $p \in \Int(\sigma)$. For each component $A \in \mathbf{C}$, we set
\[ \alpha_A : e^{-1}_A(p) \to \Hom_{\mathbf{C}}\left(M_p, A \right), \qquad [g,p] \mapsto g \circ m. \]
Because this $m$ is unique, $\alpha_A$ is well-defined. Observe now that
\[ \left(\beta_A \circ \alpha_A\right)[g,p] = [g \circ m, p]. \]
But $m$ has the property that we are also given a simplex $\sigma \in \st(m)$ such that $p \in \Int(\sigma)$. That means that $(g \circ m,p) \rhd (g,p)$, so $[g \circ m,p] = [g,p]$. In the other direction we find
\[ \left(\alpha_A \circ \beta_A \right)(h) = h, \]
so we conclude that $\alpha$ and $\beta$ are each other's inverse transformations.
\end{proof}
\begin{lemma*}
\label{lem:well-fibered implies flat}
If $\mathbf{C}$ is well-fibered, then $\mu : \mathbf{C} \to \mathbf{LH}/X_{\mathbf{C}}$ is flat.
\end{lemma*}
\begin{proof}
By \cref{lem:has enough points}, it suffices to prove that for every $p \in X_{\mathbf{C}}$ the functor $p^* \circ \mu : \mathbf{C} \to \mathbf{Set}$ is flat. This is the same thing as proving that the category of elements $\int_{\mathbf{C}} \left( p^* \circ \mu \right)$ is filtered, by \cref{thm:flat iff filtering}. Since $\mathbf{C}$ is well-fibered, there exists some object $B \in \mathbf{C}$ such that $p^* \circ \mu \cong \Hom_{\mathbf{C}}\left(B,-\right)$. Therefore,
\[ \int_\mathbf{C} \left( p^* \circ \mu \right) \cong \int_{\mathbf{C}} \Hom_{\mathbf{C}}\left(B, - \right) \cong B \backslash \mathbf{C}. \]
Now the over-category $B \backslash \mathbf{C}$ is always filtered, because $\id_B : B \to B$ is an initial object.
\end{proof}
So we see that when $\mathbf{C}$ is Alexandroff, $\mu$ is flat.
\begin{proposition*}
\label{prop:the geometric morphism induced by ST}
There exists a geometric morphism
\[ \tau(\ST) : \mathbf{LH}/X_{\mathbf{C}} \to \mathbf{Set}^{\mathbf{C}^{op}} \]
for which the left-exact left adjoint $\tau(\ST)^*$ is given by sending a presheaf $P$ on $\mathbf{C}$ to the tensor product $P \otimes_{\mathbf{C}} \ST$, and for which the right adjoint $\tau(\ST)_*$ sends an etale space $e : E \to X_{\mathbf{C}}$ to the presheaf $\underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E\right)$ defined for every object $A \in \mathbf{C}$ by
\[ \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E \right)(A) = \Hom_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST(A), E \right). \]
\end{proposition*}
\begin{proof}
Follows directly from the theory in \cite[Chapter VII, Paragraph 7]{MacLaneMoerdijk91}. In particular, in \cite[Theorem VII.7.2]{MacLaneMoerdijk91}, take $\mathscr{E} = \mathbf{LH}/X_{\mathbf{C}}$. Alternatively, we spoke of the bijection between flat functors and geometric morphisms in \cref{thm:geometric morphisms correpsond to flat functors to E}.
\end{proof}
We shall be needing the following proposition.
\begin{proposition*}
\label{prop:if two maps agree on a point then they are equal from szamuely}
Let $p : Y \to X$ be a (not necessarily finite) covering map, where $Y$ is a topological space and $X$ is a locally connected space. Let $f,g : Z \to Y$ be two continuous maps satisfying $p \circ f= p \circ g$, where $Z$ is a connected topological space. If there is a point $z \in Z$ with $f(z) = g(z)$, then $f=g$.
\end{proposition*}
\begin{proof}
This is \cite[Proposition 2.2.2]{szamuely}. We'll give a sketch of the proof here. Let $U = \{w \in Z : f(w) = g(w)\}$. Then prove that $U$ is both open and closed in $Z$. Conclude that $U$ must be all of $Z$ by connectedness.
\end{proof}
The following proposition is central.
\begin{proposition*}
\label{coro:number of LHs is d if the degree is d}
Let $\pi_E : E \to X_\mathbf{C}$ be a finite covering map of degree $d>0$ and let $A$ be an object of $\mathbf{C}$. Then we have a natural bijection of sets
\[ \alpha_{A,E} : \left(\mathbf{LH}/X_\mathbf{C} \right)\left(\mu A, E \right) \to \pi_E^{-1}(|A|), \qquad \varphi \mapsto \varphi[\id_A, |A|]. \]
\end{proposition*}
\begin{proof}
By \cref{lem:alexandroff implies trivial endomorphisms},
\[ e_A^{-1}(|A|) = \left\{ \left[ \id_A, |A| \right] \right\} \subset \ST(A). \]
Write
\[ \pi_E^{-1}(|A|) = \{x_1,\ldots,x_d\} \subset E. \]
Now take a morphism $\varphi \in (\mathbf{LH}/X_{\mathbf{C}})(\ST(A), E)$. Then
\[ \varphi[\id_A, |A|] \in \{x_1,\ldots,x_d\}. \]
I claim that these $d$ choices for $\varphi[\id_A,|A|]$ completely determine $\varphi$.
So let $\psi \in (\mathbf{LH}/X_{\mathbf{C}})(\ST(A),E)$ be another morphism and suppose that
\[ \varphi[\id_A,|A|] = x_1 = \psi[\id_A,|A|]. \]
We will apply \cref{prop:if two maps agree on a point then they are equal from szamuely}.
Take $Y = E$, $X = X_{\mathbf{C}}$, $Z = \ST(A)$, $p = \pi_E$, $f = \varphi$, $g = \psi$ and $z = [\id_A,|A|]$ in \cref{prop:if two maps agree on a point then they are equal from szamuely}.
Then $X_{\mathbf{C}}$ is a locally connected space, because it is a CW-complex by \cite[Proposition I.2.3]{goersjardinne09}. Moreover, $\ST(A)$ is connected by \cref{lem:ST is connected for every object A}. Finally,
\[ p \circ f = \pi_E \circ \varphi = e_A = \pi_E \circ \varphi = p \circ g. \]
This proves that
\[ \# \left(\mathbf{LH}/X_\mathbf{C} \right)\left(\mu A, E \right) \leq d. \]
Let us now prove that the map $\alpha_{A,E}$ is surjective.
Thus, given $x \in \pi_E^{-1}(|A|)$ we want to show that there exists some $\varphi \in (\mathbf{LH}/X_{\mathbf{C}})(\ST A, E)$ such that $\varphi[\id_A,|A|] = x$. We shall actually construct such a $\varphi$. First, observe that $\pi_E$ is a Serre fibration. Then apply \cref{prop:if two maps agree on a point then they are equal from szamuely} to see that any two lifts of some $|\sigma| : \Delta^n \to X_{\mathbf{C}}$ are unique. For each $f \in \mathbf{C}/A$ (and so in particular for $\id_A$) we have a commutative diagram
\[ \begin{tikzcd}
\Delta^0 \arrow[hook]{r}{x} \arrow[hook, swap]{d}{|d_0|} & E \arrow{d}{\pi_E} \\
\Delta^1 \arrow[swap]{r}{|f|} \arrow[dashed]{ur}{\exists ! \widetilde{f}} & X_{\mathbf{C}} \end{tikzcd} \]
and a unique diagonal filler $\widetilde{f} : \Delta^1 \to E$ as indicated by the dotted arrow in the diagram. Thus we have a collection of lifted paths $\widetilde{f} : \Delta^n \to E$ all ending up at the point $x \in E$ and starting at some arbitrary point in $E$. Let us call the starting point $\widetilde{f}(0)$.
Now let $[f,p] \in \ST(A)$ be an arbitrary point. We are going to define what $\varphi[f,p]$ is. We have $f : D_f \to A$ and $p \in D_f^*$, so $p \in \Int(\sigma)$ for some $n$-simplex $\sigma \in \st(D_f)$. We may assume that $\sigma$ is non-degenerate by \cref{lem:eilenberg-zilber}.
If $n=0$, then $p=|D_f|$. In that case, we define
\[ \varphi[f,p] := \widetilde{f}(0). \]
Suppose now that $n>0$. Let $\theta : \mathbf{0} \to \mathbf{n}$ be an injective order-preserving map as in \cref{eq:sigma is eventual face of tau diagram} such that $D_f = \sigma \circ \mathbf{\Delta}(-,\theta)$. Then we have a commutative diagram
\[ \begin{tikzcd}
\Delta^0 \arrow[hook]{r}{\widetilde{f}(0)} \arrow[hook, swap]{d}{|\mathbf{\Delta}(-,\theta)|} & E \arrow{d}{\pi_E} \\
\Delta^n \arrow[swap]{r}{|\sigma|} \arrow[dashed]{ur}{\exists ! \widetilde{\sigma}} & X_{\mathbf{C}} \end{tikzcd} \]
and a unique diagonal filler $\widetilde{\sigma} : \Delta^n \to E$.
Let $t \in \Delta^n$ be the unique coordinates such that $p = |\sigma|(t)$. We define
\[ \varphi[f,p] := \widetilde{\sigma}(t). \]
We must prove that this definition is independent of the chosen representative of the equivalence relation in $\ST(A)$.
So suppose that $(f,p) \rhd (g,p)$. Then $p \in \Int(\sigma_f)$ and $p \in \Int(\sigma_g)$ for some $\sigma_f$ having $D_f$ as a vertex and some $\sigma_g$ having $D_g$ as a vertex. Suppose that we have uniquely lifted $\sigma_f$ and $\sigma_g$ to maps
\[ \Delta^n \xrightarrow{\widetilde{\sigma_f}} E, \qquad \Delta^m \xrightarrow{\widetilde{\sigma_g}} E. \]
Let $t_f \in \Delta^n$ and $t_g \in \Delta^m$ be the unique coordinates such that
\[ |\sigma_f|(t_f) = p = |\sigma_g|(t_g). \]
By the definition of $\rhd$, There exists a morphism $h : f \to g$ in $\mathbf{C}/A$ and a $k$-simplex $\tau \in \st(h)$ such that $p \in \Int(\tau)$. Consider first the $2$-simplex $\beta$ given by
\[ \beta = (h,g) : \mathbf{\Delta}(-, \mathbf{2}) \to N\mathbf{C}. \]
Let $\widetilde{\beta} : \Delta^2 \to E$ be the unique lift of $|\beta| : \Delta^2 \to X_{\mathbf{C}}$. By \cite[Exercise A.1]{AlgebraicTopologyBible}, the face of a lift is the lift of a face, so we see that two of the faces of $\widetilde{\beta}$ upstairs in $E$ are the lifts $\widetilde{f}$ and $\widetilde{g}$. Denote by $\widetilde{h}$ the third lift of $|h| : \Delta^1 \to X_{\mathbf{C}}$.
We may assume by \cref{lem:eilenberg-zilber} that $\tau$, $\sigma_f$ and $\sigma_g$ are non-degenerate.
This implies that $\tau = \sigma_f = \sigma_g$, and $n=m=k$, and $t_f = t_g$. Let $\theta' : \mathbf{1} \to \mathbf{m}$ be an injective order-preserving map as in \cref{eq:sigma is eventual face of tau diagram} such that $h = \tau \circ \mathbf{\Delta}(-,\theta')$. Then we have a commutative diagram
\[ \begin{tikzcd}
\Delta^1 \arrow{r}{\widetilde{h}} \arrow[hook, swap]{d}{|\mathbf{\Delta}(-,\theta')|} & E \arrow{d}{\pi_E} \\
\Delta^m \arrow[swap]{r}{|\tau|} \arrow[dashed]{ur}{\exists ! \widetilde{\tau}} & X_{\mathbf{C}} \end{tikzcd} \]
By uniqueness of the lifts, $\widetilde{\sigma_f} = \widetilde{\sigma_g} = \widetilde{\tau}$.
Continuity of $\varphi$ follows from the fact that all the liftings $\widetilde{\sigma} : \Delta^n \to E$ from the continuous maps $|\sigma| : \Delta^n \to X_{\mathbf{C}}$ are continuous. Moreover, the realization $X_{\mathbf{C}}$ is defined as the colimit
\[ X_{\mathbf{C}} = \colim_{\stackrel{\mathbf{\Delta}(-,\mathbf{n}) \to N\mathbf{C}}{\text{in } \mathbf{\Delta} \downarrow N\mathbf{C}}}\Delta^n \]
So the gluing data comes from $X_{\mathbf{C}}$.
\end{proof}
\begin{theorem*}
\label{thm:equivalence of categories}
If $\pi : E \to X_{\mathbf{C}}$ is a finite covering map, then $\underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E \right)$ is a locally constant finite presheaf on $\mathbf{C}$. Conversely, if $P$ is a locally constant finite presheaf on $\mathbf{C}$, then $P \otimes_{\mathbf{C}} \ST$ has the structure of a finite covering space over $X_{\mathbf{C}}$.
\end{theorem*}
\begin{proof}
The claim that $P \otimes_{\mathbf{C}} \ST$ is a finite covering map whenever $P \in \left(\mathbf{Set}^{\mathbf{C}^{op}}\right)_{\lcf}$ is covered in \cref{prop:standard LCF properties for the LCF topos}. (Use \cref{thm:equivalence of categories between etale spaces and sheaves} there for the translation between sheaves and etale spaces). Explicitly, the finite covering map is given by
\[ \pi : P \otimes_{\mathbf{C}} \ST \to X_{\mathbf{C}}, \qquad x \otimes [f,p] \mapsto p. \]
The degree of $\pi$ is the number of elements in $P(A)$, for any $A \in \mathbf{C}$. This is well-defined by \cref{prop:locally constant iff every restriction map is a bijection} and the assumption that $X_{\mathbf{C}}$ is connected.
We shall prove the other direction, which is the remarkable one. So we want to show that given a finite covering map $\pi_E : E \to X_\mathbf{C}$ and given a morphism $f : A \to B$ in $\mathbf{C}$, the map
\begin{equation}
\label{eq:ST hom map between locally const finites}
(\mathbf{LH}/X_\mathbf{C})(\ST B, E) \to (\mathbf{LH}/X_\mathbf{C})(\ST A, E), \qquad \varphi \mapsto \varphi \circ \ST(f)
\end{equation}
is a bijection. By \cref{coro:number of LHs is d if the degree is d}, it suffices to prove that the map in \cref{eq:ST hom map between locally const finites} is injective. So take two morphisms $\varphi, \psi \in (\mathbf{LH}/X_\mathbf{C})(\ST B, E)$ and suppose that $ \varphi \circ \ST(f) = \psi \circ \ST(f)$. We want to prove that $\varphi = \psi$. In \cref{prop:if two maps agree on a point then they are equal from szamuely}, take $Y = E$, $X = X_{\mathbf{C}}$, $Z = \ST(B)$, $p = \pi_E$, $f = \varphi$, $g = \psi$. As in the proof of \cref{coro:number of LHs is d if the degree is d}, all conditions of \cref{prop:if two maps agree on a point then they are equal from szamuely} are satisfied, except that we need to supply a point $[h,p] \in \ST(B)$ such that $\varphi[h,p] = \psi[h,p]$. But we know that
\[ \forall \; [g,p] \in \ST(A) : \varphi[f \circ g,p] = \psi[f \circ g, p]. \]
Now $\ST(A)$ is non-empty, because $[\id_A, |A|] \in \ST(A)$. Therefore
\[ \varphi[f, |A|] = \psi[f, |A|] \]
and we are done.
\end{proof}
\begin{proposition*}
\label{prop:the counit of the adjunction is an isomorphism}
Let $E \in \mathbf{FinCov}/X_{\mathbf{C}}$. Then the counit at the component $E$
\[ \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E\right) \otimes_{\mathbf{C}} \ST \to E \]
of the adjunction $- \otimes_{\mathbf{C}} \ST \dashv \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST,-\right)$ is an isomorphism.
\end{proposition*}
\begin{proof}
The counit is given by the continuous map over the base space $X_{\mathbf{C}}$
\[ \varepsilon_E : \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E\right) \otimes_{\mathbf{C}} \ST \to E, \qquad \varphi \otimes [f,p] \mapsto \varphi\left([f,p]\right), \]
where $\varphi \in \left(\mathbf{LH}/X_{\mathbf{C}}\right)(\ST(A),E)$ for some $A \in \mathbf{C}$ and $[f,p] \in \ST(A)$. Like for sheaves, it suffices to prove that $\varepsilon_E$ is an isomorphism on the level of stalks, i.e. fibers of the finite covering maps. First of all, it suffices to look at points $p$ of the form $p = |A|$ for some object $A \in \mathbf{C}$, for recall (viz. \cref{def:well-fibered}, \cref{lem:alexandroff implies well-fibered}) that $\ST$ is well-fibered, so that $p^* \circ \ST \cong \Hom(M_p,-)$. This gives
\begin{align*}
p^* \circ \left( \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E\right) \otimes_{\mathbf{C}} \ST \right)
&\cong \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E\right) \otimes_{\mathbf{C}} \left( p^* \circ \ST \right)
\\
&\cong \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E\right) \otimes_{\mathbf{C}} \Hom\left(M_p,-\right)
\\
&\cong \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST, E\right) \left(M_p \right) \\
&= \Hom_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST(M_p), E\right) \\
&\cong \pi_E^{-1}\left(|M_p| \right)
\end{align*}
Now if we follow the isomorphisms, the composition is precisely the counit.
\end{proof}
A similar thing occurs with the unit.
\begin{proposition*}
\label{prop: the unit of the adjunction is an isomorphism}
Let $P$ be a locally constant finite presheaf. Then the unit of the adjunction $-\otimes_{\mathbf{C}} \ST \dashv \underline{\Hom}_{\mathbf{LH}/X_{\mathbf{C}}}\left(\ST,-\right)$ at the component $P$ is an isomorphism.
\end{proposition*}
\begin{proof}
The unit is a map of presheaves
\begin{equation}
\label{eq:the unit of the adjunction equation}
\eta : P \to \uHomLHOverXC{\ST}{P\otimes_{\mathbf{C}} \ST}
\end{equation}
which for a given object $A \in \mathbf{C}$ is a map of sets
\[ \eta_A : P(A) \to \HomLHOverXC{\ST(A)}{P \otimes_{\mathbf{C}} \ST} \]
and, since $\mathbf{LH}/X_{\mathbf{C}}$ is cartesian closed (because it is a topos), this is the same thing as giving a map of sets
\[ \eta_A^\top : P(A) \times \ST(A) \to P \otimes \ST \]
and this map is given by
\[ \eta_A^\top(x, [f,p]) = x \otimes [f,p]. \]
Now the isomorphism in \cref{coro:number of LHs if size of P(A) from ST(A) to the tensor product} is precisely the unit.
\end{proof}
\begin{corollary*}
\label{coro:left and right adjoint restrict to an equivalence of categories for lcf}
The left and right adjoint of \cref{prop:the geometric morphism induced by ST} restrict to an equivalence of categories
\[ \mathbf{FinCov}/X_{\mathbf{C}} \cong \left(\mathbf{Set}^{\mathbf{C}^{op}}\right)_{\lcf}. \]
\end{corollary*}
\begin{proof}
Apply \cref{prop: the unit of the adjunction is an isomorphism} and \cref{prop:the counit of the adjunction is an isomorphism}.
\end{proof}
\begin{corollary*}
\label{coro:isomorphism of profinite groups}
Let $A \in \mathbf{C}$ be an object. Then there is a natural isomorphism of profinite groups
\[ \widehat{\pi}_1\left(X_\mathbf{C}, |A|\right) \cong \pi_1 \left( \mathbf{Set}^{\mathbf{C}^{op}}, A \right). \]
\end{corollary*}
\begin{proof}
Interpret $A$ as a geometric morphism (point)
\[ A : \mathbf{Set} \to \mathbf{Set}^{\mathbf{C}^{op}} \]
where the inverse image part sends a presheaf $P$ on $\mathbf{C}$ to $P(A)$, and the direct image part sends a set $S$ to the ``underline Hom'' from \cref{constr:how to get points}. So $A$ is a point of the topos $\mathbf{Set}^{\mathbf{C}^{op}}$.
The category $\left(\mathbf{Set}^{\mathbf{C}^{op}}\right)_{\lcf}$ is a Galois category with fundamental functor given by the inverse image part of the point $A$. From \cref{coro:left and right adjoint restrict to an equivalence of categories for lcf}, we obtain
\[ \pi_1 \left( \mathbf{Set}^{\mathbf{C}^{op}}, A \right) \cong \pi_1 \left( \Sh(X_\mathbf{C}), |A| \right). \]
Then from \cite[Theorem 1.15, or 3.10]{lenstra08}, we obtain
\[ \pi_1 \left( \Sh(X_\mathbf{C}), |A| \right) \cong \widehat{\pi}_1\left(X_\mathbf{C}, |A|\right). \]
\end{proof}
\begin{example*}
Take $\mathbf{C}$ to be the graph category $x \rightrightarrows y$ with $f,g : x \to y$. Then $X_{\mathbf{C}}$ is a circle with fundamental group $\Z$, so \cref{coro:isomorphism of profinite groups} tells us that
\[ \pi_1 \left( \mathbf{Sets}^{\mathbf{C}^{op}}, x\right) = \widehat{\Z}. \] Compare this with section 3.3.
\end{example*}
\begin{example*}
Take $\mathbf{C}$ to be the (co)equalizer category from \cref{ex:ST of the equalizer category} or \cref{ex:ST of the coequalizer category}. Both realizations $X_{\mathbf{C}}$ are disks, so we can immediately conclude that $\pi_1 \left( \mathbf{Set}^{\mathbf{C}^{op}}, x \right) = 0$.
\end{example*}
\begin{example*}
Take $\mathbf{C}$ to be the category given by $x \rightrightarrows y \leftleftarrows z$. Then the realization $X_{\mathbf{C}}$ is a figure-8. The fundamental group of the figure-8 can be computed using the Van Kampen theorem to find that $\pi_1\left(\mathbf{Set}^{\mathbf{C}^{op}}, x\right) = \widehat{\Z * \Z}$.
\end{example*}
\begin{example*}
Take $\mathbf{C}$ to be any finite poset. Then the fundamental group of $\mathbf{Set}^{\mathbf{C}^{op}}$ is the profinite completion of the fundamental group of $\mathbf{C}$ viewed as a finite $T_0$-space by \cref{thm:mccord functor generalizes the mccord map}.
\end{example*}
\begin{color}{red}
\begin{definition*}
A topos $\mathscr{E}$ is said to \emph{have enough points} if
\end{definition*}
\end{color}
\end{document}