-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcover.tex
160 lines (132 loc) · 8.94 KB
/
cover.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
%!TEX root = main.tex
%
% cover.tex
%
\chapter{Locally Constant Objects}
Fix a topos $\mathscr{E}$.
\begin{definition}[Family version]
\label{definition: cover family version}
A collection of objects $\{f_{\alpha} : U_\alpha \to 1\}_{\alpha \in I}$ is called a \emph{cover} if the $f_\alpha$ constitute a jointly epimorphic family. That is to say, $\bigsqcup_{\alpha} f_{\alpha} : \bigsqcup_{\alpha} U_{\alpha} \twoheadrightarrow 1$ is an epimorphism.
\end{definition}
\begin{definition}[Single version]
\label{definition: cover single version}
An object $U \in \mathscr{E}$ is called a \emph{cover} if $U \twoheadrightarrow 1$ is an epimorphism.
\end{definition}
If $\mathscr{E}$ is cocomplete (has all colimits $D : I \to \mathscr{E}$, where $I$ is a small category), then \cref{definition: cover family version} and \cref{definition: cover single version} coincide.
\begin{definition}
Let $X,U \in \mathscr{E}$, $U \neq 0$. Then $X$ is said to be \emph{trivialized by $U$} if there exists a set $S \in \mathbf{Sets}$ such that $X \times U \cong \Delta S \times U$ in the slice topos $\mathscr{E}/U$. The set $S$ is called a \emph{local trivialization}, local to the object $U$.
\end{definition}
\begin{lemma}
If $X \in \mathscr{E}$ is trivialized by some $U$, say $X \times U \cong \Delta S \times U$ and $V \to U$ is any morphism, then $X \times V \cong \Delta S \times V$.
\end{lemma}
\begin{proof}
$X \times V$ is the pullback of $X \times U \to U \leftarrow V$ and $\Delta S \times V$ is the pullback of $\Delta S \times U \to U \leftarrow V$. But these are isomorphic, hence $X \times V \cong \Delta S \times V$ by uniqueness of the pullback.
\end{proof}
Note in particular that $V$ can be the initial object $0$, although the lemma does not give us any useful information in that case.
Recall that a well-pointed has a fully faithful global sections functor.
\begin{lemma}
Assume $\mathscr{E}$ is well-pointed. If $X$ is trivialized by some $U$ with two different local trivializations, say $\Delta T \times U \cong X \times U \cong \Delta S \times U$, then $S \cong T$ as $\mathbf{Sets}$.
\end{lemma}
\begin{proof}
\end{proof}
\begin{definition}
An object $X \in \mathscr{E}$ is \emph{locally constant} if there is a covering family $\{f_{\alpha} :U_{\alpha} \to 1\}_{\alpha \in I}$ such that for each $\alpha \in I$ the object $X$ is trivialized by $U_{\alpha}$.
\end{definition}
\begin{definition}
Let $U \in \mathscr{E}$ be a cover. An object $V \in \mathscr{E}$ is called a \emph{refinement} of $U$ if there is an epimorphism $V \twoheadrightarrow U$.
\end{definition}
\begin{example}
Let $X$ be a topological space. A cover of $X$ is a collection $\{U_\alpha\}_{\alpha \in I}$ of open subsets $U_{\alpha} \subseteq X$ for each $\alpha \in I$. Equivalently, it is a topological space $\bigsqcup_{\alpha} U_\alpha$ with a surjection to $X$. Hence $\bigsqcup_{\alpha} h_{U_{\alpha}} \twoheadrightarrow h_X = 1$ is an epimorphism, and therefore a cover in $\Sh(X)$. This example requires that $\mathbf{Top}$ be cocomplete.
\end{example}
\begin{lemma}
\label{lemma: common refinement of covers exists}
Let $U,V \in \mathscr{E}$ be covers. Then there exists a common refinement of both $U$ and $V$.
\end{lemma}
\begin{proof}
Take the pullback of $U \twoheadrightarrow 1 \twoheadleftarrow V$. Epimorphisms are stable under pullback by \cite[Theorem VII.7.3]{MacLaneMoerdijk91}
\end{proof}
\begin{definition}
An object $X \in \mathscr{E}$ is called \emph{constant} if there exists a set $S \in \mathbf{Sets}$ such that $X \cong \Delta S$.
\end{definition}
\begin{definition}
An object $X \in \mathscr{E}$ is called \emph{locally constant} if there exists a cover $U \twoheadrightarrow 1$ and a set $S \in \mathbf{Sets}$ such that $X \times U \cong \Delta S \times U$ in the slice topos $\mathscr{E}/U$.
\end{definition}
Note that a constant object $X \in \mathscr{E}$ is locally constant by taking $U = 1$.
\begin{lemma}
\label{lemma: refinement of locally constant object is locally constant}
If $X \in \mathscr{E}$ is locally constant, say $X \times U \cong \Delta S \times U$ in $\mathscr{E}/U$ and if $V \to U$ is any morphism to $U$, then $X \times V \cong \Delta S \times V$ in $\mathscr{E}/V$.
\end{lemma}
\begin{proof}
In the diagram below
\[ \begin{tikzcd}
X \times V \arrow[rrrr, dotted] \arrow[dr] \arrow[dddrr, bend right] & & & & \Delta S \times V \arrow[dl] \arrow[dddll, bend left] \\
& X \times U \arrow[rr, "\sim"] \arrow[dr] & & \Delta S \times U \arrow[dl] & \\
& & U & & \\
& & V \arrow[u] &
\end{tikzcd} \]
the bottom left area is a pullback, as is the bottom right area. Since there is a morphism from $X \times U$ to $\Delta S \times U$ we get an induced morphism from the pullback $X \times V \to \Delta S \times V$ as indicated by the dotted arrow. But the newly formed trapezoid is a pullback. Since both monomorphisms and epimorphisms are stable under pullback, the dotted arrow is also both mono and epi. Hence it is an isomorphism since $\mathscr{E}$ is balanced.
\end{proof}
\begin{lemma}
\label{lemma: different presentations of locally constant object}
If $X \in \mathscr{E}$ is locally constant with two different presentations, say $X \times U \cong \Delta S \times U$ and $X \times V \cong \Delta T \times V$ in $\mathscr{E}/U$ and $\mathscr{E}/V$, respectively, then $\Delta S \cong \Delta T$.
\end{lemma}
\begin{proof}
Let $W$ be a common refinement of the covers $U$ and $V$. By \cref{lemma: refinement of locally constant object is locally constant} we know that $X \times W \cong \Delta S \times W$ and $X \times W \cong \Delta T \times W$ in $\mathscr{E}/W$. Hence $\Delta S \times W \cong \Delta T \times W$ in $\mathscr{E}/W$, so $\Delta T \cong \Delta S$ in $\mathscr{E}$.
\end{proof}
\begin{lemma}
\label{lemma: terminal object is locally const}
The terminal object $1 \in \mathscr{E}$ is locally constant.
\end{lemma}
\begin{proof}
Take $U = 1$ and $S = *$.
\end{proof}
\begin{lemma}
\label{lemma: pullback of locally const is locally const}
Let $X,Y,Z$ be locally constant objects in $\mathscr{E}$. Suppose that there are morphisms $X \to Z \leftarrow Y$. Then the pullback $X \times_Z Y$ is locally constant.
\end{lemma}
\begin{proof}
Suppose that $X \times U_X \cong \Delta S_X \times U_X$, $Y \times U_Y \cong \Delta S_Y \times U_Y$ and $Z \times U_Z \cong \Delta S_Z \times U_Z$ in $\mathscr{E}/U_X$, $\mathscr{E}/U_Y$ and $\mathscr{E}/U_Z$, respectively. Take a common refinement $U$ of $U_X$, $U_Y$ and $U_Z$. Let $S = S_X \times_{S_Z} S_Y$. Then $\Delta S = \Delta S_X \times_{\Delta S_Z} \Delta S_Y$ because $\Delta$ is left exact. Since
\[ \begin{tikzcd}
\left( X \times_Z Y \right) \times U \arrow[r] \arrow[d] & X \times U \cong \Delta S_X \times U \arrow[d] \\
Y \times U \cong \Delta S_Y \times U \arrow[r] & Z \times U \cong \Delta S_Z \times U
\end{tikzcd} \]
and
\[ \begin{tikzcd}
\Delta S \times U \arrow[r] \arrow[d] & X \times U \cong \Delta S_X \times U \arrow[d] \\
Y \times U \cong \Delta S_Y \times U \arrow[r] & Z \times U \cong \Delta S_Z \times U
\end{tikzcd} \]
are both pullbacks of the same diagram, by uniqueness of pullbacks we must have an isomorphism $\left( X \times_Z Y \right) \times U \cong \Delta S \times U$.
\end{proof}
\begin{corollary}
All finite limits of locally constant objects are locally constant.
\end{corollary}
\begin{lemma}
\label{lemma: initial object is locally const}
The initial object $0 \in \mathscr{E}$ is locally constant.
\end{lemma}
\begin{proof}
Take $U = 1$ and $S = \emptyset$.
\end{proof}
\begin{lemma}
\label{lemma: locally constant coproducts}
If $X,Y$ are locally constant in $\mathscr{E}$, then so is $X + Y$.
\end{lemma}
\begin{proof}
Assume $X \times U_X \cong \Delta S_X \times U_X$ and $Y \times U_Y \cong \Delta S_Y \times U_Y$ in $\mathscr{E}/U_X$ and $\mathscr{E}/U_Y$, respectively. Take a common refinement $U$ of $U_X,U_Y$ and let $S = S_X \sqcup S_Y$. Then $\Delta S = \Delta S_X + \Delta S_Y$ because $\Delta$ preserves all colimits. Therefore
\begin{align*}
\Delta S \times U &\cong \left( \Delta S_X + \Delta S_Y \right) \times U \\
&\cong \left( \Delta S_X \times U \right) + \left( \Delta S_Y \times U \right) \\
&\cong \left(X \times U \right) + \left(Y \times U \right) \cong \left(X + Y\right) \times U
\end{align*}
as required.
\end{proof}
\begin{definition}
An object $X \in \mathscr{E}$ is called \emph{locally constant finite} if it is locally constant, say $X \times U \cong \Delta S \times U$ in $\mathscr{E}/U$, and moreover the set $S$ is finite.
\end{definition}
Let $\mathscr{E}_f$ be the full subcategory of $\mathscr{E}$ whose objects are locally constant finite.
\begin{proposition}
Let $p : \mathbf{Sets} \to \mathscr{E}$ be a point. Then $\mathscr{E}_f$ together with the inverse image part $p^*$ of $p$ is a Galois category.
\end{proposition}
\begin{proof}
We check the axioms of \cite[Definition 3.1]{lenstra08}. Axiom (G1) is true by \cref{lemma: terminal object is locally const} and \cref{lemma: pullback of locally const is locally const}.
\end{proof}