-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconnectedcomponents.tex
170 lines (146 loc) · 11.5 KB
/
connectedcomponents.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
%!TEX root = main.tex
%
% connectedcomponents.tex
%
\chapter{Motivating Example}
Consider the map $f : X \to Y$ between finite $T_0$ spaces:
\[ \begin{tikzcd}
a_1 \arrow[d, no head] \arrow[dr, no head] & a_2 \arrow[dl, no head, crossing over] \arrow[dr, no head] & c \arrow[d, no head] \arrow[dl, no head, crossing over] & & a \arrow[d, no head] \arrow[dr, no head] & b \arrow[d, no head] \arrow[dl, no head, crossing over] \\
a_3 & b & d & \xrightarrow{f} & c & d
\end{tikzcd} \]
where $f(a_1) = f(a_2) = f(a_3) = a$, $f(b) = b$, $f(c) = c$ and $f(d) = d$. The map $f$ is order-preserving, hence continuous. The partially ordered set $\mathcal{O}(X)$ is given by
\[ \begin{tikzcd}
X \\
U_{a_1} \cup U_{a_2} & U_{a_1} \cup U_c & U_{a_2} \cup U_c \\
U_{a_1} \arrow[d, no head] & U_{a_2} \arrow[d, no head] & U_{c} \arrow[d, no head] \\
U_{a_3} \cup U_b \arrow[d, no head] & U_{a_3} \cup U_d \arrow[dr, no head] & U_b \cup U_d \\
U_{a_3} \arrow[dr, no head] \arrow[ur, no head] & U_b \arrow[d, no head] \arrow[ul, no head, crossing over] \arrow[ur, no head, crossing over] & U_d \arrow[dl, no head] \arrow[u, no head] \\
& \emptyset &
\end{tikzcd} \]
while the partially ordered set $\mathcal{O}(Y)$ is given by
\[ \begin{tikzcd}
& Y \arrow[dl, no head] \arrow[dr, no head] & \\
U_a \arrow[dr, no head] & & U_b \arrow[dl, no head] \\
& U_c \cup U_d \arrow[dl, no head] \arrow[dr, no head] & \\
U_c \arrow[dr, no head] & & U_d \arrow[dl, no head] \\
& \emptyset &
\end{tikzcd} \]
So a sheaf $F \in \Sh(Y)$ is completely determined by $FU_a$, $FU_b$, $FU_c$ and $FU_d$. More precisely, if $F$ wants to be a sheaf then it suffices to specify the four sets $FU_y$, with $y \in Y$, and then note that $F(U_c \cup U_d) = FU_c \times FU_d$ and
\[ FX = FU_a \times_{F(U_c \cup U_d)} FU_b \]
which follow from the equalizer diagrams. Likewise, a sheaf $G \in \Sh(X)$ is completely determined by $GU_x$ for all $x \in X$.
The continuous map $f : X \to Y$ induces a geometric morphism $f = (f^* \dashv f_*) : \Sh(X) \to \Sh(Y)$. We can explicitly tell what $f^*$ and $f_*$ do; namely
\begin{align*}
(f_*F)(U_a) &= F(f^{-1}U_a) = F\left( U_{a_1} \cup U_{a_2}\right) = FU_{a_1} \times_{F(U_{a_3} \cup U_c \cup U_d)} FU_{a_2}, \\
(f_*F)(U_b) &= F(f^{-1}U_b) = FU_b, \\
(f_*F)(U_c) &= F(f^{-1}U_c) = FU_c, \\
(f_*F)(U_d) &= F(f^{-1}U_d) = FU_d.
\end{align*}
If $G \in \Sh(Y)$, then by definition,
\[ f^*G = \left( U \mapsto \colim_{V \in \mathcal{O}(Y) : V \supseteq f(U)} GV \right)^+. \]
But taking the colimit over all open $V$ such that $V \supseteq f(U)$ is the same as just substituting the open set $\bigcup_{y \in f(U)} U_y$, in which case we don't have to sheafify. Hence we can explicitly say what the sheaf $f^*G$ is too, for any $G \in \Sh(Y)$. We have
\begin{align*}
(f^*G)(U_{a_1}) &= (f^*G)(U_{a_2}) = (f^*G)(U_{a_3}) = GU_a, \\
(f^*G)(U_b) &= GU_b, \\
(f^*G)(U_c) &= GU_c, \\
(f^*G)(U_d) &= GU_d.
\end{align*}
apter{Connected Components}
\begin{lemma}
Let $\mathscr{E}$ be a topos and $A,B \in \mathscr{E}$. Then the collection of isomorphisms $\Iso(A,B)$ is an object in $\mathscr{E}$.
\end{lemma}
\begin{proof}
Since $\mathscr{E}$ is cartesian closed, we have an adjunction $\left( \cdot \right)^X \dashv \left( \cdot \times X\right)$ for every object $X$. In particular, we call the counit of this adjunction the ``evaluation map''; so we have a morphism
\[ \eval_A : A^B \times B \to A. \]
Thus we have a composition of two morphisms
\[ \eval_A \circ \left( 1_{A^B} \times \eval_B \right) : A^B \times \left( B^A \times A \right) \to A^B \times B \to A. \]
By the adjunction, this morphism corresponds to a unique morphism
\[ \circ_A : A^B \times B^A \to A^A, \]
which we will call ``composition''. Likewise, we have a composition
\[ \circ_B : A^B \times B^A \to B^B. \]
Hence we have a product of compositions
\[ \left(\circ_A, \circ_B \right) : A^B \times B^A \to A^A \times B^B. \]
On the other hand,
\[ \Hom\left(A,A\right) \cong \Hom\left(1 \times A, A\right) \cong \Hom\left(1, A^A \right). \]
So $1_A \in \Hom\left(A,A\right)$ corresponds to a unique global section $1 \to A^A$, which by abuse of language we will also call $1_A$. Since $1 \cong 1 \times 1$, we have a global section to the product $\left(1_A, 1_B\right) : 1 \to A^A \times B^B$. Hence we have a pullback
\[ \begin{tikzcd}
\Iso(A,B) \arrow[r] \arrow[d] & 1 \arrow[d, "{\left(1_A,1_B \right)}"] \\
A^B \times B^A \arrow[r, swap, "{\left(\circ_A, \circ_B \right)}"] & A^A \times B^B \\
\end{tikzcd} \]
Here $\Iso(A,B) \to A^B \times B^A$ is the map given by $f \mapsto \left(\left(f^{-1}\right)^\intercal, f^\intercal \right)$, where $f^\intercal$ denotes the transpose under the adjunction.
\end{proof}
We will use the familiar notation $\Aut_\mathscr{E}(X) := \Iso(X,X)$ for the object of automorphisms of an object $X \in \mathscr{E}$.
We remark that $\Aut_\mathscr{E}$ is in general not a functor.
\begin{lemma}
Let $\mathscr{E}$ be a topos. Then every $X \in \mathscr{E}$ induces a monomorphism $\Aut_\mathscr{E}(X) \to X^X$.
\end{lemma}
\begin{proof}
\end{proof}
\begin{lemma}
Let $\mathscr{E}$ be a topos. Then every object $X$ comes equipped with a morphism $X \times \Aut_{\mathscr{E}}\left(X \right) \to X$.
\end{lemma}
\begin{proof}
Giving a morphism $X \times \Aut(X) \to X$ is equivalent to giving a morphism $\Aut(X) \to X^X$. So we send $f \in \Aut(X)$ to its transpose $f^\intercal$ under the adjunction $\left( \cdot \right)^X \dashv \left( \cdot \times X\right)$.
\end{proof}
\begin{proposition}
Let $\mathscr{E}$ be a topos. Then there is a geometric morphism
\[ \begin{tikzcd} \mathscr{E} \arrow[r, bend left, "\Gamma"] & \mathbf{Sets} \arrow[l, bend left, "\Delta"] \end{tikzcd} \]
defined by $\Gamma(X) := \Hom_{\mathscr{E}}(1, X)$ and $\Delta(S) := \bigsqcup_{s \in S} 1$ if $S$ is non-empty and $\Delta(\emptyset) = 0$.
\end{proposition}
\begin{proof}
For any $X \in \mathscr{E}$ and any non-empty set $S \in \mathbf{Sets}$ we have
\begin{align*}
\Hom_{\mathscr{E}}\left(\Delta S, X \right) &= \Hom_{\mathscr{E}} \left( \bigsqcup_{s \in S} 1, X \right) \\
&\cong \prod_{s \in S} \Hom_{\mathscr{E}} \left(1, X \right) \\
&= \prod_{s \in S} \Gamma X \\
&\cong \left(\Gamma X \right)^{S} \\
&\cong \Hom_{\mathbf{Sets}}\left( S, \Gamma X \right).
\end{align*}
By construction $\Delta$ preserves the terminal object, and if $A \times_C B$ is a fibre product of sets $A \xrightarrow{f} C \xleftarrow{g} B$ in $\mathbf{Sets}$, with projections $p_A : A \times_C B \to A$ and $p_B : A \times_C B \to B$ respectively, then we need to show that
\[ \begin{tikzcd}
\Delta\left( A \times_C B \right) \arrow[r, "\Delta p_A"] \arrow[d, "\Delta p_B"] & \Delta A \arrow[d, "\Delta f"] \\
\Delta B \arrow[r, "\Delta g"] & \Delta C
\end{tikzcd} \]
is a pullback in $\mathscr{E}$. Let $P$ be the pullback of $\Delta A \rightarrow \Delta C \leftarrow \Delta B$ in $\mathscr{E}$, with morphisms $\pi_{\Delta A} : P \to \Delta A$ and $\pi_{\Delta B} : P \to \Delta B$. Then there exists a unique mediating morphism $\varphi : \Delta \left( A \times_C B \right) \to P$. Equivalently, there is a unique collection of morphisms $\left\{ \varphi_{a,b} : (a,b) \in A \times_C B \right\}$ where for each $(a,b) \in A \times_C B$, $\varphi_{a,b} : 1_{a,b} \to P$. Here, $1_{a,b}$ denotes the terminal object, but it is labeled with an index. For every $(a,b) \in A \times_C B$ we have a unique morphism $ \psi_{a,b} : P \to 1_{a,b}$.
\end{proof}
\begin{definition}
Let $\mathscr{E}$ be a topos. An object $X \in \mathscr{E}$ is called \emph{locally constant} if there exists an object $U \in \mathscr{E}$ with an epi $U \to 1$ and a set $S \in \mathbf{Sets}$ such that $X \times U \cong \Delta S \times U$ in the slice topos $\mathscr{E}/U$.
If in addition $S$ can be chosen to be finite, then $X$ is called \emph{locally constant finite}.
If the functor $\Delta : \mathbf{Sets} \to \mathscr{E}$ has a left adjoint $\pi_0 : \mathscr{E} \to \mathbf{Sets}$, then we call $\mathscr{E}$ \emph{locally constant}. We call the left adjoint $\pi_0$ the \emph{connected components} functor.
\end{definition}
\begin{definition}
Let $\mathscr{E}$ be a topos. A \emph{point} of $\mathscr{E}$ is a geometric morphism $\mathbf{Sets} \to \mathscr{E}$.
\end{definition}
\begin{proposition}
Let $\mathscr{E}$ be a topos, $p : \mathbf{Sets} \to \mathscr{E}$ a point and fix a full subcategory $\mathscr{E}_{f}$ of locally constant finite objects. Then the left adjoint $p^* : \mathscr{E} \to \mathbf{Sets}$ restricts to an exact functor $\mathscr{E}_{f} \to \mathbf{FinSets}$.
\end{proposition}
\begin{proof}
Let $X \in \mathscr{E}_f$. Then there exists a finite set $S$ and an epi $U \to 1$ such that $X \times U \cong \Delta S \times U$ in $\mathscr{E}/U$. Since $p^*$ is left exact, we see that $p^*X \times p^*U \cong p^* \Delta S \times p^* U$ as sets in $\mathbf{Sets}/p^*U$. Hence the bijection restricts to a bijection $p^*X \cong p^* \Delta S$. But then we see that $p^* \Delta S = p^* \left( 1 \sqcup \ldots \sqcup 1 \right) = p^*(1) \sqcup \ldots \sqcup p^*(1) = * \sqcup \ldots \sqcup *$, which is a finite set. The fact that the restriction is exact is trivial.
\end{proof}
\begin{proposition}
The category $\mathscr{E}_f$ is Galois. The fundamental functor is $p^*$.
\end{proposition}
\begin{proof}
asdf
\end{proof}
\begin{definition}
Let $\mathscr{E}$ be a topos. An object $X \in \mathscr{E}$ is said to be \emph{connected} if whenever $X = X_1 \oplus X_2$, then $X_1 = 0$ or $X_2 = 0$, where $0$ denotes the initial object of $\mathscr{E}$. The topos $\mathscr{E}$ is itself called \emph{connected} if its terminal object $1$ is connected.
An object $X \in \mathscr{E}$ is said to be \emph{constant} if it is (isomorphic to) a coproduct of terminals. Equivalently, if there exists some set $A \in \mathbf{Sets}$ such that $c(A) \cong X$. The topos $\mathscr{E}$ is itself called \emph{constant} if its initial object $0$ is constant.
An object $X \in \mathscr{E}$ is said to be \emph{trivialized by an object $U \in \mathscr{E}$} if the restriction $X|_U = \left(X \times U \to U \right)$ in $\mathscr{E}/U$ is a constant object.
If $\mathscr{E}$ is a Grothendieck topos, say with site $(\mathcal{C},J)$, then an object $X \in \mathscr{E}$ is said to be \emph{locally constant} if the collection of all objects that trivialize $X$ cover $1$. That is, if for every object $U \in \mathscr{E}$ such that $X|_U$ is constant in $\mathscr{E}/U$, we have $U = \dom(f)$ for some $f \in R \in J(1)$, where $R$ is a covering sieve.
The topos $\mathscr{E}$ is itself called \emph{locally constant} if the constant set functor $c$ has a left adjoint $\pi_0 : \mathscr{E} \to \mathbf{Sets}$, called the \emph{connected components} functor.
If the connected components functor $\pi_0$ is moreover left exact, then we call the geometric morphism $(c \dashv \pi_0)$ the \emph{global point} of the topos $\mathscr{E}$.
\end{definition}
\begin{example}
Every constant object is locally constant in a Grothendieck topos.
\end{example}
\begin{example}
In $\mathbf{Sets}$, every object is connected and constant.
\end{example}
\begin{example}
If $X$ is a topological space, then the connected objects of $\Sh(X)$ correspond to the connected components of the space $X$. If $A \in \mathbf{Sets}$ is any set, then the constant sheaf $A_X$ is a locally constant object in $\Sh(X)$. If $X$ is connected, then $A_X$ is a constant object.
\end{example}
\begin{definition}
Let $\mathscr{E}$ be a topos. An object $X \in \mathscr{E}$ is called a \emph{Galois} object if it connected, locally constant, and the morphism
\[ X \times \Aut_{\mathscr{E}}(X) \xrightarrow{1 \times e} X \times X, \qquad \]
is an isomorphism, where $e$ is evaluation.
\end{definition}