-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
59 lines (42 loc) · 1.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import json
import tensorflow as tf
from data import datasets
from patchy import PatchySan
from model import train_from_config
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('config', None,
"""Path to the configuration json file of the
network.""")
tf.app.flags.DEFINE_integer('display_step', 10,
"""The frequency, in number of global steps, that
the network training is logged.""")
tf.app.flags.DEFINE_integer('save_checkpoint_secs', 60*60,
"""The frequency, in seconds, that a checkpoint is
saved.""")
tf.app.flags.DEFINE_integer('save_summaries_steps', 100,
"""The frequency, in number of global steps, that
the summaries are written to disk.""")
def dataset(config):
"""Reads and initializes a dataset specified by a passed configuration.
Args:
config: Configuration object.
Returns:
A dataset.
"""
if config['name'] in datasets:
return datasets[config['name']].create(config)
elif config['name'] == 'patchy_san':
return PatchySan.create(config)
else:
raise ValueError('Dataset not found.')
def main(argv=None):
"""Runs the script."""
if not tf.gfile.Exists(FLAGS.config):
raise ValueError('{} does not exist.'.format(FLAGS.config))
with open(FLAGS.config, 'r') as f:
config = json.load(f)
train_from_config(dataset(config['dataset']), config,
FLAGS.display_step, FLAGS.save_checkpoint_secs,
FLAGS.save_summaries_steps)
if __name__ == '__main__':
tf.app.run()