Skip to content

Latest commit

 

History

History
35 lines (26 loc) · 1.1 KB

README.md

File metadata and controls

35 lines (26 loc) · 1.1 KB

Birlasoft-NLP

Objective.

  1. Research on Open Source LLMs - Falcon/MPT/Llama etc
  2. Study LangChain
  3. Study how to fine tune LLMs - see LORA framework
  4. Pick variant based on:
    • a. Size (First smaller variant e.g. 7b, then later larger 30b-e.g. Falcon-7b followed by Falcon-30B-b)
    • b. Training mechanism: Instruction preferred, Completion may not meet our need (e.g. MPT-30B-Instruct)
  5. POC: Two main tracks:
    • a. Finetuning: Fine tune using "corporate" data (we will use dummy data and build framework)
    • b. ReAct framework: Thought -> Reasoning -> Action - iterative
  6. Implement a Proof of Concept (POC) with two main tracks:
    • a. Finetuning: Fine-tune the selected LLM using "corporate" data (dummy data will be used initially).
    • b. ReAct Framework: Explore the Thought -> Reasoning -> Action iterative framework using the LLM.

LLM

  1. bloom-1b

Main Libraries

  1. langchain

##Frameworks

  1. LoRA

High Level Process/pusedo code

  • Document loading (from pdf, txt,word etc.)
  • Document embedding, using LLM embeddings
  • Train the retrival model
  • query the document

Results