forked from aleju/imgaug
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_example_images.py
419 lines (378 loc) · 23 KB
/
generate_example_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
from __future__ import print_function, division
import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np
from scipy import ndimage, misc
from skimage import data
import matplotlib.pyplot as plt
import six.moves as sm
import re
import os
from collections import defaultdict
import PIL.Image
try:
from cStringIO import StringIO as BytesIO
except ImportError:
from io import BytesIO
np.random.seed(44)
ia.seed(44)
IMAGES_DIR = "images"
def main():
draw_small_overview()
draw_single_sequential_images()
draw_per_augmenter_images()
def draw_small_overview():
ia.seed(42)
image = ia.quokka(size=0.2)
heatmap = ia.quokka_heatmap(size=0.4)
segmap = ia.quokka_segmentation_map(size=0.2)
kps = ia.quokka_keypoints(size=0.2)
bbs = ia.quokka_bounding_boxes(size=0.2)
batch = ia.Batch(
images=[image],
heatmaps=[heatmap.invert()],
segmentation_maps=[segmap],
keypoints=[kps],
bounding_boxes=[bbs]
)
augs = []
augs.append(("noop", iaa.Noop()))
augs.append(("non_geometric", iaa.Sequential([
iaa.AdditiveGaussianNoise(scale=(0, 20)),
iaa.ContrastNormalization(1.2),
iaa.Sharpen(alpha=1.0, lightness=1.5)
])))
augs.append(("affine", iaa.Affine(rotate=0, translate_percent={"x": 0.1}, scale=1.3, mode="constant", cval=25)))
augs.append(("cropandpad", iaa.CropAndPad(percent=(-0.05, 0.2, -0.05, -0.2), pad_mode="maximum")))
augs.append(("fliplr_perspective", iaa.Sequential([
iaa.Fliplr(1.0),
iaa.PerspectiveTransform(scale=0.15)
])))
for name, aug in augs:
result = list(aug.augment_batches([batch]))[0]
image_aug = result.images_aug[0]
image_aug_heatmap = result.heatmaps_aug[0].draw(cmap=None)[0]
image_aug_segmap = result.segmentation_maps_aug[0].draw_on_image(image_aug, alpha=0.8)
image_aug_kps = result.keypoints_aug[0].draw_on_image(image_aug, color=[0, 255, 0], size=7)
image_aug_bbs = result.bounding_boxes_aug[0].cut_out_of_image().draw_on_image(image_aug, thickness=3)
misc.imsave(os.path.join(IMAGES_DIR, "small_overview", "%s_image.jpg" % (name,)), image_aug)
misc.imsave(os.path.join(IMAGES_DIR, "small_overview", "%s_heatmap.jpg" % (name,)), image_aug_heatmap)
misc.imsave(os.path.join(IMAGES_DIR, "small_overview", "%s_segmap.jpg" % (name,)), image_aug_segmap)
misc.imsave(os.path.join(IMAGES_DIR, "small_overview", "%s_kps.jpg" % (name,)), image_aug_kps)
misc.imsave(os.path.join(IMAGES_DIR, "small_overview", "%s_bbs.jpg" % (name,)), image_aug_bbs)
def draw_single_sequential_images():
ia.seed(44)
#image = misc.imresize(ndimage.imread("quokka.jpg")[0:643, 0:643], (128, 128))
image = ia.quokka_square(size=(128, 128))
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
seq = iaa.Sequential(
[
# apply the following augmenters to most images
iaa.Fliplr(0.5), # horizontally flip 50% of all images
iaa.Flipud(0.2), # vertically flip 20% of all images
# crop images by -5% to 10% of their height/width
sometimes(iaa.CropAndPad(
percent=(-0.05, 0.1),
pad_mode=ia.ALL,
pad_cval=(0, 255)
)),
sometimes(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
cval=(0, 255), # if mode is constant, use a cval between 0 and 255
mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
iaa.Grayscale(alpha=(0.0, 1.0)),
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), # sometimes move parts of the image around
sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
],
random_order=True
)
],
random_order=True
)
grid = seq.draw_grid(image, cols=8, rows=8)
misc.imsave("examples_grid.jpg", grid)
def draw_per_augmenter_images():
print("[draw_per_augmenter_images] Loading image...")
#image = misc.imresize(ndimage.imread("quokka.jpg")[0:643, 0:643], (128, 128))
image = ia.quokka_square(size=(128, 128))
keypoints = [ia.Keypoint(x=34, y=15), ia.Keypoint(x=85, y=13), ia.Keypoint(x=63, y=73)] # left ear, right ear, mouth
keypoints = [ia.KeypointsOnImage(keypoints, shape=image.shape)]
print("[draw_per_augmenter_images] Initializing...")
rows_augmenters = [
(0, "Noop", [("", iaa.Noop()) for _ in sm.xrange(5)]),
(0, "Crop\n(top, right,\nbottom, left)", [(str(vals), iaa.Crop(px=vals)) for vals in [(2, 0, 0, 0), (0, 8, 8, 0), (4, 0, 16, 4), (8, 0, 0, 32), (32, 64, 0, 0)]]),
(0, "Pad\n(top, right,\nbottom, left)", [(str(vals), iaa.Pad(px=vals)) for vals in [(2, 0, 0, 0), (0, 8, 8, 0), (4, 0, 16, 4), (8, 0, 0, 32), (32, 64, 0, 0)]]),
(0, "Fliplr", [(str(p), iaa.Fliplr(p)) for p in [0, 0, 1, 1, 1]]),
(0, "Flipud", [(str(p), iaa.Flipud(p)) for p in [0, 0, 1, 1, 1]]),
(0, "Superpixels\np_replace=1", [("n_segments=%d" % (n_segments,), iaa.Superpixels(p_replace=1.0, n_segments=n_segments)) for n_segments in [25, 50, 75, 100, 125]]),
(0, "Superpixels\nn_segments=100", [("p_replace=%.2f" % (p_replace,), iaa.Superpixels(p_replace=p_replace, n_segments=100)) for p_replace in [0, 0.25, 0.5, 0.75, 1.0]]),
(0, "Invert", [("p=%d" % (p,), iaa.Invert(p=p)) for p in [0, 0, 1, 1, 1]]),
(0, "Invert\n(per_channel)", [("p=%.2f" % (p,), iaa.Invert(p=p, per_channel=True)) for p in [0.5, 0.5, 0.5, 0.5, 0.5]]),
(0, "Add", [("value=%d" % (val,), iaa.Add(val)) for val in [-45, -25, 0, 25, 45]]),
(0, "Add\n(per channel)", [("value=(%d, %d)" % (vals[0], vals[1],), iaa.Add(vals, per_channel=True)) for vals in [(-55, -35), (-35, -15), (-10, 10), (15, 35), (35, 55)]]),
(0, "AddToHueAndSaturation", [("value=%d" % (val,), iaa.AddToHueAndSaturation(val)) for val in [-45, -25, 0, 25, 45]]),
(0, "Multiply", [("value=%.2f" % (val,), iaa.Multiply(val)) for val in [0.25, 0.5, 1.0, 1.25, 1.5]]),
(1, "Multiply\n(per channel)", [("value=(%.2f, %.2f)" % (vals[0], vals[1],), iaa.Multiply(vals, per_channel=True)) for vals in [(0.15, 0.35), (0.4, 0.6), (0.9, 1.1), (1.15, 1.35), (1.4, 1.6)]]),
(0, "GaussianBlur", [("sigma=%.2f" % (sigma,), iaa.GaussianBlur(sigma=sigma)) for sigma in [0.25, 0.50, 1.0, 2.0, 4.0]]),
(0, "AverageBlur", [("k=%d" % (k,), iaa.AverageBlur(k=k)) for k in [1, 3, 5, 7, 9]]),
(0, "MedianBlur", [("k=%d" % (k,), iaa.MedianBlur(k=k)) for k in [1, 3, 5, 7, 9]]),
(0, "BilateralBlur\nsigma_color=250,\nsigma_space=250", [("d=%d" % (d,), iaa.BilateralBlur(d=d, sigma_color=250, sigma_space=250)) for d in [1, 3, 5, 7, 9]]),
(0, "Sharpen\n(alpha=1)", [("lightness=%.2f" % (lightness,), iaa.Sharpen(alpha=1, lightness=lightness)) for lightness in [0, 0.5, 1.0, 1.5, 2.0]]),
(0, "Emboss\n(alpha=1)", [("strength=%.2f" % (strength,), iaa.Emboss(alpha=1, strength=strength)) for strength in [0, 0.5, 1.0, 1.5, 2.0]]),
(0, "EdgeDetect", [("alpha=%.2f" % (alpha,), iaa.EdgeDetect(alpha=alpha)) for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]),
(0, "DirectedEdgeDetect\n(alpha=1)", [("direction=%.2f" % (direction,), iaa.DirectedEdgeDetect(alpha=1, direction=direction)) for direction in [0.0, 1*(360/5)/360, 2*(360/5)/360, 3*(360/5)/360, 4*(360/5)/360]]),
(0, "AdditiveGaussianNoise", [("scale=%.2f*255" % (scale,), iaa.AdditiveGaussianNoise(scale=scale * 255)) for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]),
(0, "AdditiveGaussianNoise\n(per channel)", [("scale=%.2f*255" % (scale,), iaa.AdditiveGaussianNoise(scale=scale * 255, per_channel=True)) for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]),
(0, "Dropout", [("p=%.2f" % (p,), iaa.Dropout(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
(0, "Dropout\n(per channel)", [("p=%.2f" % (p,), iaa.Dropout(p=p, per_channel=True)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
(3, "CoarseDropout\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseDropout(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
(0, "CoarseDropout\n(p=0.2, per channel)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseDropout(p=0.2, size_percent=size_percent, per_channel=True, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
(0, "SaltAndPepper", [("p=%.2f" % (p,), iaa.SaltAndPepper(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
(0, "Salt", [("p=%.2f" % (p,), iaa.Salt(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
(0, "Pepper", [("p=%.2f" % (p,), iaa.Pepper(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]),
(0, "CoarseSaltAndPepper\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseSaltAndPepper(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
(0, "CoarseSalt\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarseSalt(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
(0, "CoarsePepper\n(p=0.2)", [("size_percent=%.2f" % (size_percent,), iaa.CoarsePepper(p=0.2, size_percent=size_percent, min_size=2)) for size_percent in [0.3, 0.2, 0.1, 0.05, 0.02]]),
(0, "ContrastNormalization", [("alpha=%.1f" % (alpha,), iaa.ContrastNormalization(alpha=alpha)) for alpha in [0.5, 0.75, 1.0, 1.25, 1.50]]),
(0, "ContrastNormalization\n(per channel)", [("alpha=(%.2f, %.2f)" % (alphas[0], alphas[1],), iaa.ContrastNormalization(alpha=alphas, per_channel=True)) for alphas in [(0.4, 0.6), (0.65, 0.85), (0.9, 1.1), (1.15, 1.35), (1.4, 1.6)]]),
(0, "Grayscale", [("alpha=%.1f" % (alpha,), iaa.Grayscale(alpha=alpha)) for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]),
(6, "PerspectiveTransform", [("scale=%.3f" % (scale,), iaa.PerspectiveTransform(scale=scale)) for scale in [0.025, 0.05, 0.075, 0.10, 0.125]]),
(0, "PiecewiseAffine", [("scale=%.3f" % (scale,), iaa.PiecewiseAffine(scale=scale)) for scale in [0.015, 0.03, 0.045, 0.06, 0.075]]),
(0, "Affine: Scale", [("%.1fx" % (scale,), iaa.Affine(scale=scale)) for scale in [0.1, 0.5, 1.0, 1.5, 1.9]]),
(0, "Affine: Translate", [("x=%d y=%d" % (x, y), iaa.Affine(translate_px={"x": x, "y": y})) for x, y in [(-32, -16), (-16, -32), (-16, -8), (16, 8), (16, 32)]]),
(0, "Affine: Rotate", [("%d deg" % (rotate,), iaa.Affine(rotate=rotate)) for rotate in [-90, -45, 0, 45, 90]]),
(0, "Affine: Shear", [("%d deg" % (shear,), iaa.Affine(shear=shear)) for shear in [-45, -25, 0, 25, 45]]),
(0, "Affine: Modes", [(mode, iaa.Affine(translate_px=-32, mode=mode)) for mode in ["constant", "edge", "symmetric", "reflect", "wrap"]]),
(0, "Affine: cval", [("%d" % (int(cval*255),), iaa.Affine(translate_px=-32, cval=int(cval*255), mode="constant")) for cval in [0.0, 0.25, 0.5, 0.75, 1.0]]),
(
2, "Affine: all", [
(
"",
iaa.Affine(
scale={"x": (0.5, 1.5), "y": (0.5, 1.5)},
translate_px={"x": (-32, 32), "y": (-32, 32)},
rotate=(-45, 45),
shear=(-32, 32),
mode=ia.ALL,
cval=(0.0, 1.0)
)
)
for _ in sm.xrange(5)
]
),
(1, "ElasticTransformation\n(sigma=0.2)", [("alpha=%.1f" % (alpha,), iaa.ElasticTransformation(alpha=alpha, sigma=0.2)) for alpha in [0.1, 0.5, 1.0, 3.0, 9.0]]),
(0, "Alpha\nwith EdgeDetect(1.0)", [("factor=%.1f" % (factor,), iaa.Alpha(factor=factor, first=iaa.EdgeDetect(1.0))) for factor in [0.0, 0.25, 0.5, 0.75, 1.0]]),
(4, "Alpha\nwith EdgeDetect(1.0)\n(per channel)", [("factor=(%.2f, %.2f)" % (factor[0], factor[1]), iaa.Alpha(factor=factor, first=iaa.EdgeDetect(1.0), per_channel=0.5)) for factor in [(0.0, 0.2), (0.15, 0.35), (0.4, 0.6), (0.65, 0.85), (0.8, 1.0)]]),
(15, "SimplexNoiseAlpha\nwith EdgeDetect(1.0)", [("", iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0))) for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]]),
(9, "FrequencyNoiseAlpha\nwith EdgeDetect(1.0)", [("exponent=%.1f" % (exponent,), iaa.FrequencyNoiseAlpha(exponent=exponent, first=iaa.EdgeDetect(1.0), size_px_max=16, upscale_method="linear", sigmoid=False)) for exponent in [-4, -2, 0, 2, 4]])
]
print("[draw_per_augmenter_images] Augmenting...")
rows = []
for (row_seed, row_name, augmenters) in rows_augmenters:
ia.seed(row_seed)
#for img_title, augmenter in augmenters:
# #aug.reseed(1000)
# pass
row_images = []
row_keypoints = []
row_titles = []
for img_title, augmenter in augmenters:
aug_det = augmenter.to_deterministic()
row_images.append(aug_det.augment_image(image))
row_keypoints.append(aug_det.augment_keypoints(keypoints)[0])
row_titles.append(img_title)
rows.append((row_name, row_images, row_keypoints, row_titles))
# matplotlib drawin routine
"""
print("[draw_per_augmenter_images] Plotting...")
width = 8
height = int(1.5 * len(rows_augmenters))
fig = plt.figure(figsize=(width, height))
grid_rows = len(rows)
grid_cols = 1 + 5
gs = gridspec.GridSpec(grid_rows, grid_cols, width_ratios=[2, 1, 1, 1, 1, 1])
axes = []
for i in sm.xrange(grid_rows):
axes.append([plt.subplot(gs[i, col_idx]) for col_idx in sm.xrange(grid_cols)])
fig.tight_layout()
#fig.subplots_adjust(bottom=0.2 / grid_rows, hspace=0.22)
#fig.subplots_adjust(wspace=0.005, hspace=0.425, bottom=0.02)
fig.subplots_adjust(wspace=0.005, hspace=0.005, bottom=0.02)
for row_idx, (row_name, row_images, row_keypoints, row_titles) in enumerate(rows):
axes_row = axes[row_idx]
for col_idx in sm.xrange(grid_cols):
ax = axes_row[col_idx]
ax.cla()
ax.axis("off")
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
if col_idx == 0:
ax.text(0, 0.5, row_name, color="black")
else:
cell_image = row_images[col_idx-1]
cell_keypoints = row_keypoints[col_idx-1]
cell_image_kp = cell_keypoints.draw_on_image(cell_image, size=5)
ax.imshow(cell_image_kp)
x = 0
y = 145
#ax.text(x, y, row_titles[col_idx-1], color="black", backgroundcolor="white", fontsize=6)
ax.text(x, y, row_titles[col_idx-1], color="black", fontsize=7)
fig.savefig("examples.jpg", bbox_inches="tight")
#plt.show()
"""
# simpler and faster drawing routine
"""
output_image = ExamplesImage(128, 128, 128+64, 32)
for (row_name, row_images, row_keypoints, row_titles) in rows:
row_images_kps = []
for image, keypoints in zip(row_images, row_keypoints):
row_images_kps.append(keypoints.draw_on_image(image, size=5))
output_image.add_row(row_name, row_images_kps, row_titles)
misc.imsave("examples.jpg", output_image.draw())
"""
# routine to draw many single files
seen = defaultdict(lambda: 0)
markups = []
for (row_name, row_images, row_keypoints, row_titles) in rows:
output_image = ExamplesImage(128, 128, 128+64, 32)
row_images_kps = []
for image, keypoints in zip(row_images, row_keypoints):
row_images_kps.append(keypoints.draw_on_image(image, size=5))
output_image.add_row(row_name, row_images_kps, row_titles)
if "\n" in row_name:
row_name_clean = row_name[0:row_name.find("\n")+1]
else:
row_name_clean = row_name
row_name_clean = re.sub(r"[^a-z0-9]+", "_", row_name_clean.lower())
row_name_clean = row_name_clean.strip("_")
if seen[row_name_clean] > 0:
row_name_clean = "%s_%d" % (row_name_clean, seen[row_name_clean] + 1)
fp = os.path.join(IMAGES_DIR, "examples_%s.jpg" % (row_name_clean,))
#misc.imsave(fp, output_image.draw())
save(fp, output_image.draw())
seen[row_name_clean] += 1
markup_descr = row_name.replace('"', '') \
.replace("\n", " ") \
.replace("(", "") \
.replace(")", "")
markup = '![%s](%s?raw=true "%s")' % (markup_descr, fp, markup_descr)
markups.append(markup)
for markup in markups:
print(markup)
class ExamplesImage(object):
def __init__(self, image_height, image_width, title_cell_width, subtitle_height):
self.rows = []
self.image_height = image_height
self.image_width = image_width
self.title_cell_width = title_cell_width
self.cell_height = image_height + subtitle_height
self.cell_width = image_width
def add_row(self, title, images, subtitles):
assert len(images) == len(subtitles)
images_rs = []
for image in images:
images_rs.append(ia.imresize_single_image(image, (self.image_height, self.image_width)))
self.rows.append((title, images_rs, subtitles))
def draw(self):
rows_drawn = [self.draw_row(title, images, subtitles) for title, images, subtitles in self.rows]
grid = np.vstack(rows_drawn)
return grid
def draw_row(self, title, images, subtitles):
title_cell = np.zeros((self.cell_height, self.title_cell_width, 3), dtype=np.uint8) + 255
title_cell = ia.draw_text(title_cell, x=2, y=12, text=title, color=[0, 0, 0], size=16)
image_cells = []
for image, subtitle in zip(images, subtitles):
image_cell = np.zeros((self.cell_height, self.cell_width, 3), dtype=np.uint8) + 255
image_cell[0:image.shape[0], 0:image.shape[1], :] = image
image_cell = ia.draw_text(image_cell, x=2, y=image.shape[0]+2, text=subtitle, color=[0, 0, 0], size=11)
image_cells.append(image_cell)
row = np.hstack([title_cell] + image_cells)
return row
#
# TODO this part is largely copied from generate_documentation_images, make DRY
#
def compress_to_jpg(image, quality=75):
quality = quality if quality is not None else 75
im = PIL.Image.fromarray(image)
out = BytesIO()
im.save(out, format="JPEG", quality=quality)
jpg_string = out.getvalue()
out.close()
return jpg_string
def decompress_jpg(image_compressed):
img_compressed_buffer = BytesIO()
img_compressed_buffer.write(image_compressed)
img = ndimage.imread(img_compressed_buffer, mode="RGB")
img_compressed_buffer.close()
return img
def arrdiff(arr1, arr2):
nb_cells = np.prod(arr2.shape)
d_avg = np.sum(np.power(np.abs(arr1.astype(np.float64) - arr2.astype(np.float64)), 2)) / nb_cells
return d_avg
def save(fp, image, quality=75):
image_jpg = compress_to_jpg(image, quality=quality)
image_jpg_decompressed = decompress_jpg(image_jpg)
# If the image file already exists and is (practically) identical,
# then don't save it again to avoid polluting the repository with tons
# of image updates.
# Not that we have to compare here the results AFTER jpg compression
# and then decompression. Otherwise we compare two images of which
# image (1) has never been compressed while image (2) was compressed and
# then decompressed.
if os.path.isfile(fp):
image_saved = ndimage.imread(fp, mode="RGB")
#print("arrdiff", arrdiff(image_jpg_decompressed, image_saved))
same_shape = (image_jpg_decompressed.shape == image_saved.shape)
d_avg = arrdiff(image_jpg_decompressed, image_saved) if same_shape else -1
if same_shape and d_avg <= 1.0:
print("[INFO] Did not save image '%s', because the already saved image is basically identical (d_avg=%.8f)" % (fp, d_avg,))
return
else:
print("[INFO] Saving image '%s'..." % (fp,))
with open(fp, "w") as f:
f.write(image_jpg)
if __name__ == "__main__":
main()