forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryMulDivKernel.cu
186 lines (168 loc) · 6.4 KB
/
BinaryMulDivKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <c10/util/TypeSafeSignMath.h>
#include <type_traits>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at { namespace native {
template<typename scalar_t>
struct DivFunctor {
__device__ scalar_t operator() (scalar_t a, scalar_t b) const {
return a / b;
}
};
template<typename T>
struct MulFunctor {
__device__ T operator() (T a, T b) const {
return a * b;
}
};
// Workaround for the error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
template<>
struct MulFunctor<bool> {
__device__ bool operator() (bool a, bool b) const {
return a && b;
}
};
void div_true_kernel_cuda(TensorIteratorBase& iter) {
if (iter.is_cpu_scalar(2)) {
// optimization for floating-point types: if the second operand is a CPU
// scalar, compute a * reciprocal(b). Note that this may lose one bit of
// precision compared to computing the division.
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "div_true_cuda", [&]() {
using opmath_t = at::opmath_type<scalar_t>;
auto inv_b = opmath_t(1.0) / iter.scalar_value<opmath_t>(2);
iter.remove_operand(2);
gpu_kernel(iter, BUnaryFunctor<scalar_t, scalar_t, scalar_t, MulFunctor<opmath_t>>(
MulFunctor<opmath_t>(), inv_b));
});
} else {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "div_true_cuda", [&]() {
DivFunctor<scalar_t> f;
gpu_kernel_with_scalars(iter, f);
});
}
}
void div_trunc_kernel_cuda(TensorIteratorBase& iter) {
auto dtype = iter.common_dtype();
if (isIntegralType(dtype, /*includeBool*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(dtype, "div_trunc_cuda", [&]() {
gpu_kernel_with_scalars(iter, [] GPU_LAMBDA (scalar_t a, scalar_t b) -> scalar_t {
return a / b;
});
});
} else if (iter.is_cpu_scalar(2)) {
// optimization for floating-point types: if the second operand is a CPU
// scalar, compute a * reciprocal(b). Note that this may lose one bit of
// precision compared to computing the division.
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, dtype, "div_trunc_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto inv_b = accscalar_t(1.0) / iter.scalar_value<accscalar_t>(2);
iter.remove_operand(2);
gpu_kernel(iter, [inv_b] GPU_LAMBDA (scalar_t a) -> scalar_t {
return std::trunc(a * inv_b);
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, dtype, "div_trunc_cuda", [&]() {
gpu_kernel_with_scalars(iter, [] GPU_LAMBDA (scalar_t a, scalar_t b) -> scalar_t {
return std::trunc(a / b);
});
});
}
}
void div_floor_kernel_cuda(TensorIteratorBase& iter) {
// See NOTE: [Floor Division in Python]
const auto dtype = iter.common_dtype();
if (dtype == kByte) {
// In the special case of unsigned integer division, floor division is
// equivalent to truncation division (since the signs of the divisor and
// dividend are always the same)
return div_trunc_kernel_cuda(iter);
} else if (isIntegralType(dtype, /*includeBool*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(dtype, "div_floor_cuda", [&]() {
gpu_kernel_with_scalars(iter, [] GPU_LAMBDA (scalar_t a, scalar_t b) -> scalar_t {
if (c10::signs_differ(a, b)) {
// Subtracts one from the results of truncation division if the
// divisor and dividend have different sign(bit)s and the remainder of
// the division is nonzero
const auto quot = a / b;
const auto rem = a % b;
return rem ? quot - 1 : quot;
}
return a / b;
});
});
} else if (iter.is_cpu_scalar(2)) {
// optimization for floating-point types: if the second operand is a CPU
// scalar, compute a * reciprocal(b). Note that this may lose one bit of
// precision compared to computing the division.
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, dtype, "div_floor_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto b = iter.scalar_value<accscalar_t>(2);
if (C10_UNLIKELY(b == 0)) {
return div_true_kernel_cuda(iter);
}
auto inv_b = accscalar_t(1.0) / b;
iter.remove_operand(2);
gpu_kernel(iter, [b, inv_b] GPU_LAMBDA (scalar_t a) -> scalar_t {
auto mod = std::fmod(a, b);
auto div = (a - mod) * inv_b;
if ((mod != 0) && (b < 0) != (mod < 0)) {
div -= scalar_t(1);
}
scalar_t floordiv;
if (div != 0) {
floordiv = std::floor(div);
if (div - floordiv > scalar_t(0.5)) {
floordiv += scalar_t(1.0);
}
} else {
floordiv = c10::cuda::compat::copysign(scalar_t(0), a * inv_b);
}
return floordiv;
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, dtype, "div_floor_cuda", [&]() {
gpu_kernel_with_scalars(iter, [] GPU_LAMBDA (scalar_t a, scalar_t b) -> scalar_t {
if (C10_UNLIKELY(b == 0)) {
return a / b;
}
auto mod = std::fmod(a, b);
auto div = (a - mod) / b;
if ((mod != 0) && (b < 0) != (mod < 0)) {
div -= scalar_t(1);
}
scalar_t floordiv;
if (div != 0) {
floordiv = std::floor(div);
if (div - floordiv > scalar_t(0.5)) {
floordiv += scalar_t(1.0);
}
} else {
floordiv = c10::cuda::compat::copysign(scalar_t(0), a / b);
}
return floordiv;
});
});
}
}
void mul_kernel_cuda(TensorIteratorBase& iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kHalf, kBFloat16, kBool, iter.common_dtype(), "mul_cuda", [&]() {
using opmath_t = at::opmath_type<scalar_t>;
opmath_gpu_kernel_with_scalars<scalar_t>(iter, MulFunctor<opmath_t>());
});
}
REGISTER_DISPATCH(div_true_stub, &div_true_kernel_cuda);
REGISTER_DISPATCH(div_trunc_stub, &div_trunc_kernel_cuda);
REGISTER_DISPATCH(div_floor_stub, &div_floor_kernel_cuda);
REGISTER_DISPATCH(mul_stub, &mul_kernel_cuda);
}} // namespace at::native