forked from PX4/PX4-Autopilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmc_att_control_main.cpp
409 lines (322 loc) · 13.8 KB
/
mc_att_control_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/****************************************************************************
*
* Copyright (c) 2013-2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mc_att_control_main.cpp
* Multicopter attitude controller.
*
* @author Lorenz Meier <[email protected]>
* @author Anton Babushkin <[email protected]>
* @author Sander Smeets <[email protected]>
* @author Matthias Grob <[email protected]>
* @author Beat Küng <[email protected]>
*
*/
#include "mc_att_control.hpp"
#include <drivers/drv_hrt.h>
#include <mathlib/math/Limits.hpp>
#include <mathlib/math/Functions.hpp>
#include "AttitudeControl/AttitudeControlMath.hpp"
using namespace matrix;
MulticopterAttitudeControl::MulticopterAttitudeControl(bool vtol) :
ModuleParams(nullptr),
WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
_vehicle_attitude_setpoint_pub(vtol ? ORB_ID(mc_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle")),
_vtol(vtol)
{
parameters_updated();
}
MulticopterAttitudeControl::~MulticopterAttitudeControl()
{
perf_free(_loop_perf);
}
bool
MulticopterAttitudeControl::init()
{
if (!_vehicle_attitude_sub.registerCallback()) {
PX4_ERR("callback registration failed");
return false;
}
return true;
}
void
MulticopterAttitudeControl::parameters_updated()
{
// Store some of the parameters in a more convenient way & precompute often-used values
_attitude_control.setProportionalGain(Vector3f(_param_mc_roll_p.get(), _param_mc_pitch_p.get(), _param_mc_yaw_p.get()),
_param_mc_yaw_weight.get());
// angular rate limits
using math::radians;
_attitude_control.setRateLimit(Vector3f(radians(_param_mc_rollrate_max.get()), radians(_param_mc_pitchrate_max.get()),
radians(_param_mc_yawrate_max.get())));
_man_tilt_max = math::radians(_param_mpc_man_tilt_max.get());
}
float
MulticopterAttitudeControl::throttle_curve(float throttle_stick_input)
{
// throttle_stick_input is in range [0, 1]
switch (_param_mpc_thr_curve.get()) {
case 1: // no rescaling to hover throttle
return math::interpolate(throttle_stick_input, 0.f, 1.f, _param_mpc_manthr_min.get(), _param_mpc_thr_max.get());
default: // 0 or other: rescale to hover throttle at 0.5 stick
return math::interpolateN(throttle_stick_input, {_param_mpc_manthr_min.get(), _param_mpc_thr_hover.get(), _param_mpc_thr_max.get()});
}
}
void
MulticopterAttitudeControl::generate_attitude_setpoint(const Quatf &q, float dt, bool reset_yaw_sp)
{
vehicle_attitude_setpoint_s attitude_setpoint{};
const float yaw = Eulerf(q).psi();
attitude_setpoint.yaw_sp_move_rate = _manual_control_setpoint.yaw * math::radians(_param_mpc_man_y_max.get());
// Avoid accumulating absolute yaw error with arming stick gesture in case heading_good_for_control stays true
if ((_manual_control_setpoint.throttle < -.9f) && (_param_mc_airmode.get() != 2)) {
reset_yaw_sp = true;
}
// Make sure not absolute heading error builds up
if (reset_yaw_sp) {
_man_yaw_sp = yaw;
} else {
_man_yaw_sp = wrap_pi(_man_yaw_sp + attitude_setpoint.yaw_sp_move_rate * dt);
}
/*
* Input mapping for roll & pitch setpoints
* ----------------------------------------
* We control the following 2 angles:
* - tilt angle, given by sqrt(roll*roll + pitch*pitch)
* - the direction of the maximum tilt in the XY-plane, which also defines the direction of the motion
*
* This allows a simple limitation of the tilt angle, the vehicle flies towards the direction that the stick
* points to, and changes of the stick input are linear.
*/
_man_roll_input_filter.setParameters(dt, _param_mc_man_tilt_tau.get());
_man_pitch_input_filter.setParameters(dt, _param_mc_man_tilt_tau.get());
// we want to fly towards the direction of (roll, pitch)
Vector2f v = Vector2f(_man_roll_input_filter.update(_manual_control_setpoint.roll * _man_tilt_max),
-_man_pitch_input_filter.update(_manual_control_setpoint.pitch * _man_tilt_max));
float v_norm = v.norm(); // the norm of v defines the tilt angle
if (v_norm > _man_tilt_max) { // limit to the configured maximum tilt angle
v *= _man_tilt_max / v_norm;
}
Quatf q_sp_rp = AxisAnglef(v(0), v(1), 0.f);
// The axis angle can change the yaw as well (noticeable at higher tilt angles).
// This is the formula by how much the yaw changes:
// let a := tilt angle, b := atan(y/x) (direction of maximum tilt)
// yaw = atan(-2 * sin(b) * cos(b) * sin^2(a/2) / (1 - 2 * cos^2(b) * sin^2(a/2))).
const Quatf q_sp_yaw(cosf(_man_yaw_sp / 2.f), 0.f, 0.f, sinf(_man_yaw_sp / 2.f));
if (_vtol) {
// Modify the setpoints for roll and pitch such that they reflect the user's intention even
// if a large yaw error(yaw_sp - yaw) is present. In the presence of a yaw error constructing
// an attitude setpoint from the yaw setpoint will lead to unexpected attitude behaviour from
// the user's view as the tilt will not be aligned with the heading of the vehicle.
AttitudeControlMath::correctTiltSetpointForYawError(q_sp_rp, q, q_sp_yaw);
}
// Align the desired tilt with the yaw setpoint
Quatf q_sp = q_sp_yaw * q_sp_rp;
q_sp.copyTo(attitude_setpoint.q_d);
// Transform to euler angles for logging only
const Eulerf euler_sp(q_sp);
attitude_setpoint.roll_body = euler_sp(0);
attitude_setpoint.pitch_body = euler_sp(1);
attitude_setpoint.yaw_body = euler_sp(2);
attitude_setpoint.thrust_body[2] = -throttle_curve((_manual_control_setpoint.throttle + 1.f) * .5f);
attitude_setpoint.timestamp = hrt_absolute_time();
_vehicle_attitude_setpoint_pub.publish(attitude_setpoint);
// update attitude controller setpoint immediately
_attitude_control.setAttitudeSetpoint(q_sp, attitude_setpoint.yaw_sp_move_rate);
_thrust_setpoint_body = Vector3f(attitude_setpoint.thrust_body);
_last_attitude_setpoint = attitude_setpoint.timestamp;
}
void
MulticopterAttitudeControl::Run()
{
if (should_exit()) {
_vehicle_attitude_sub.unregisterCallback();
exit_and_cleanup();
return;
}
perf_begin(_loop_perf);
// Check if parameters have changed
if (_parameter_update_sub.updated()) {
// clear update
parameter_update_s param_update;
_parameter_update_sub.copy(¶m_update);
updateParams();
parameters_updated();
}
// run controller on attitude updates
vehicle_attitude_s v_att;
if (_vehicle_attitude_sub.update(&v_att)) {
// Guard against too small (< 0.2ms) and too large (> 20ms) dt's.
const float dt = math::constrain(((v_att.timestamp_sample - _last_run) * 1e-6f), 0.0002f, 0.02f);
_last_run = v_att.timestamp_sample;
const Quatf q{v_att.q};
// Check for new attitude setpoint
if (_vehicle_attitude_setpoint_sub.updated()) {
vehicle_attitude_setpoint_s vehicle_attitude_setpoint;
if (_vehicle_attitude_setpoint_sub.copy(&vehicle_attitude_setpoint)
&& (vehicle_attitude_setpoint.timestamp > _last_attitude_setpoint)) {
_attitude_control.setAttitudeSetpoint(Quatf(vehicle_attitude_setpoint.q_d), vehicle_attitude_setpoint.yaw_sp_move_rate);
_thrust_setpoint_body = Vector3f(vehicle_attitude_setpoint.thrust_body);
_last_attitude_setpoint = vehicle_attitude_setpoint.timestamp;
}
}
// Check for a heading reset
if (_quat_reset_counter != v_att.quat_reset_counter) {
const Quatf delta_q_reset(v_att.delta_q_reset);
// for stabilized attitude generation only extract the heading change from the delta quaternion
_man_yaw_sp = wrap_pi(_man_yaw_sp + Eulerf(delta_q_reset).psi());
if (v_att.timestamp > _last_attitude_setpoint) {
// adapt existing attitude setpoint unless it was generated after the current attitude estimate
_attitude_control.adaptAttitudeSetpoint(delta_q_reset);
}
_quat_reset_counter = v_att.quat_reset_counter;
}
/* check for updates in other topics */
_manual_control_setpoint_sub.update(&_manual_control_setpoint);
_vehicle_control_mode_sub.update(&_vehicle_control_mode);
if (_vehicle_status_sub.updated()) {
vehicle_status_s vehicle_status;
if (_vehicle_status_sub.copy(&vehicle_status)) {
_vehicle_type_rotary_wing = (vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING);
_vtol = vehicle_status.is_vtol;
_vtol_in_transition_mode = vehicle_status.in_transition_mode;
_vtol_tailsitter = vehicle_status.is_vtol_tailsitter;
}
}
if (_vehicle_local_position_sub.updated()) {
vehicle_local_position_s vehicle_local_position;
if (_vehicle_local_position_sub.copy(&vehicle_local_position)) {
_heading_good_for_control = vehicle_local_position.heading_good_for_control;
}
}
bool attitude_setpoint_generated = false;
const bool is_hovering = (_vehicle_type_rotary_wing && !_vtol_in_transition_mode);
// vehicle is a tailsitter in transition mode
const bool is_tailsitter_transition = (_vtol_tailsitter && _vtol_in_transition_mode);
bool run_att_ctrl = _vehicle_control_mode.flag_control_attitude_enabled && (is_hovering || is_tailsitter_transition);
if (run_att_ctrl) {
// Generate the attitude setpoint from stick inputs if we are in Manual/Stabilized mode
if (_vehicle_control_mode.flag_control_manual_enabled &&
!_vehicle_control_mode.flag_control_altitude_enabled &&
!_vehicle_control_mode.flag_control_velocity_enabled &&
!_vehicle_control_mode.flag_control_position_enabled) {
generate_attitude_setpoint(q, dt, _reset_yaw_sp);
attitude_setpoint_generated = true;
} else {
_man_roll_input_filter.reset(0.f);
_man_pitch_input_filter.reset(0.f);
}
Vector3f rates_sp = _attitude_control.update(q);
const hrt_abstime now = hrt_absolute_time();
autotune_attitude_control_status_s pid_autotune;
if (_autotune_attitude_control_status_sub.copy(&pid_autotune)) {
if ((pid_autotune.state == autotune_attitude_control_status_s::STATE_ROLL
|| pid_autotune.state == autotune_attitude_control_status_s::STATE_PITCH
|| pid_autotune.state == autotune_attitude_control_status_s::STATE_YAW
|| pid_autotune.state == autotune_attitude_control_status_s::STATE_TEST)
&& ((now - pid_autotune.timestamp) < 1_s)) {
rates_sp += Vector3f(pid_autotune.rate_sp);
}
}
// publish rate setpoint
vehicle_rates_setpoint_s rates_setpoint{};
rates_setpoint.roll = rates_sp(0);
rates_setpoint.pitch = rates_sp(1);
rates_setpoint.yaw = rates_sp(2);
_thrust_setpoint_body.copyTo(rates_setpoint.thrust_body);
rates_setpoint.timestamp = hrt_absolute_time();
_vehicle_rates_setpoint_pub.publish(rates_setpoint);
}
// reset yaw setpoint during transitions, tailsitter.cpp generates
// attitude setpoint for the transition
_reset_yaw_sp = !attitude_setpoint_generated || !_heading_good_for_control || (_vtol && _vtol_in_transition_mode);
}
perf_end(_loop_perf);
}
int MulticopterAttitudeControl::task_spawn(int argc, char *argv[])
{
bool vtol = false;
if (argc > 1) {
if (strcmp(argv[1], "vtol") == 0) {
vtol = true;
}
}
MulticopterAttitudeControl *instance = new MulticopterAttitudeControl(vtol);
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int MulticopterAttitudeControl::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int MulticopterAttitudeControl::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
This implements the multicopter attitude controller. It takes attitude
setpoints (`vehicle_attitude_setpoint`) as inputs and outputs a rate setpoint.
The controller has a P loop for angular error
Publication documenting the implemented Quaternion Attitude Control:
Nonlinear Quadrocopter Attitude Control (2013)
by Dario Brescianini, Markus Hehn and Raffaello D'Andrea
Institute for Dynamic Systems and Control (IDSC), ETH Zurich
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("mc_att_control", "controller");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
/**
* Multicopter attitude control app start / stop handling function
*/
extern "C" __EXPORT int mc_att_control_main(int argc, char *argv[])
{
return MulticopterAttitudeControl::main(argc, argv);
}