- :py:meth:`~climpred.classes.HindcastEnsemble.verify`,
:py:meth:`~climpred.classes.PerfectModelEnsemble.verify`,
:py:meth:`~climpred.classes.HindcastEnsemble.bootstrap` and
:py:meth:`~climpred.classes.PerfectModelEnsemble.bootstrap`
accept reference
climatology
. Furthermore, referencepersistence
also allows probabilistic metrics (:issue:`202`, :issue:`565`, :pr:`566`) Aaron Spring. - Added new metric :py:class:`~climpred.metrics._roc` Receiver Operating
Characteristic as
metric='roc'
. (:pr:`566`) Aaron Spring.
- :py:meth:`~climpred.classes.HindcastEnsemble.verify` and
:py:meth:`~climpred.classes.HindcastEnsemble.bootstrap` accept
dim
aslist
,set
,tuple
orstr
(:issue:`519`, :pr:`558`) Aaron Spring. - :py:meth:`~climpred.classes.PredictionEnsemble.map` now does not fail silently when
applying a function to all
xr.Datasets
of :py:class:`~climpred.classes.PredictionEnsemble`. Instead,UserWarning``s are raised. Furthermore, ``PredictionEnsemble.map(func, *args, **kwargs)
applies only function to Datasets with matching dims ifdim="dim0_or_dim1"
is passed as**kwargs
. (:issue:`417`, :issue:`437`, :pr:`552`) Aaron Spring. - :py:class:`~climpred.metrics._rpc` was fixed in
xskillscore>=0.0.19
and hence is not falsely limited to 1 anymore (:issue:`562`, :pr:`566`) Aaron Spring.
- Docstrings are now tested in GitHub actions continuous integration. (:issue:`545`, :pr:`560`) Aaron Spring.
- Github actions now cancels previous commits, instead of running the full testing suite on every single commit. (:pr:`560`) Aaron Spring.
- :py:meth:`~climpred.classes.PerfectModelEnsemble.verify` does not add climpred attributes to skill by default anymore. (:pr:`560`) Aaron Spring.
- Drop
python==3.6
support. (:pr:`573`) Aaron Spring. - Notebooks are now linted with
nb_black using
%load_ext nb_black
or%load_ext lab_black
for Jupyter notebooks and Jupyter lab. (:issue:`526`, :pr:`572`) Aaron Spring. - Reduce dependencies to install climpred. (:issue:`454`, :pr:`572`) Aaron Spring.
- Examples from documentation available via Binder.
Find further examples in the
examples
folder. (:issue:`549`, :pr:`578`) Aaron Spring. - Rename branch
master
tomain
. (:pr:`579`) Aaron Spring.
This release is the fixed version for our Journal of Open Source Software (JOSS)
article about climpred
, see review.
- Function to calculate predictability horizon :py:func:`~climpred.predictability_horizon.predictability_horizon` based on condition. (:issue:`46`, :pr:`521`) Aaron Spring.
- :py:meth:`~climpred.classes.PredictionEnsemble.smooth` now carries
lead.attrs
(:issue:`527`, pr:521) Aaron Spring. - :py:meth:`~climpred.classes.PerfectModelEnsemble.verify` now works with
references
also for geospatial inputs, which returnedNaN
before. (:issue:`522`, pr:521) Aaron Spring. - :py:meth:`~climpred.classes.PredictionEnsemble.plot` now shifts composite lead
frequencies like
days
,pentads
,seasons
correctly. (:issue:`532`, :pr:`533`) Aaron Spring. - Adapt to
xesmf>=0.5.2
for spatial xesmf smoothing. (:issue:`543`, :pr:`548`) Aaron Spring. - :py:meth:`~climpred.classes.HindcastEnsemble.remove_bias` now carries attributes. (:issue:`531`, :pr:`551`) Aaron Spring.
This version introduces a lot of breaking changes. We are trying to overhaul
climpred
to have an intuitive API that also forces users to think about methodology
choices when running functions. The main breaking changes we introduced are for
:py:meth:`~climpred.classes.HindcastEnsemble.verify` and
:py:meth:`~climpred.classes.PerfectModelEnsemble.verify`. Now, instead of assuming
defaults for most keywords, we require the user to define metric
, comparison
,
dim
, and alignment
(for hindcast systems). We also require users to designate
the number of iterations
for bootstrapping.
- User now has to designate number of iterations with
iterations=...
in :py:meth:`~climpred.classes.HindcastEnsemble.bootstrap` (:issue:`384`, :pr:`436`) Aaron Spring and Riley X. Brady. - Make
metric
,comparison
,dim
, andalignment
required (previous defaultNone
) arguments for :py:meth:`~climpred.classes.HindcastEnsemble.verify` (:issue:`384`, :pr:`436`) Aaron Spring and Riley X. Brady. - Metric :py:class:`~climpred.metrics._brier_score` and
:py:func:`~climpred.metrics._threshold_brier_score` now requires callable keyword
argument
logical
instead offunc
(:pr:`388`) Aaron Spring. - :py:meth:`~climpred.classes.HindcastEnsemble.verify` does not correct
dim
automatically tomember
for probabilistic metrics. (:issue:`282`, :pr:`407`) Aaron Spring. - Users can no longer add multiple observations to :py:class:`~climpred.classes.HindcastEnsemble`. This will make current and future development much easier on maintainers (:issue:`429`, :pr:`453`) Riley X. Brady.
- Standardize the names of the output coordinates for
:py:meth:`~climpred.classes.PredictionEnsemble.verify` and
:py:meth:`~climpred.classes.PredictionEnsemble.bootstrap` to
initialized
,uninitialized
, andpersistence
.initialized
showcases the metric result after comparing the initialized ensemble to the verification data;uninitialized
when comparing the uninitialized (historical) ensemble to the verification data;persistence
is the evaluation of the persistence forecast (:issue:`460`, :pr:`478`, :issue:`476`, :pr:`480`) Aaron Spring. reference
keyword in :py:meth:`~climpred.classes.HindcastEnsemble.verify` should be choosen from [uninitialized
,persistence
].historical
no longer works (:issue:`460`, :pr:`478`, :issue:`476`, :pr:`480`) Aaron Spring.- :py:meth:`~climpred.classes.HindcastEnsemble.verify` returns no
skill
dimension ifreference=None
(:pr:`480`) Aaron Spring. comparison
is not applied to uninitialized skill in :py:meth:`~climpred.classes.HindcastEnsemble.bootstrap`. (:issue:`352`, :pr:`418`) Aaron Spring.
This release is accompanied by a bunch of new features. Math operations can now be used with our :py:class:`~climpred.classes.PredictionEnsemble` objects and their variables can be sub-selected. Users can now quick plot time series forecasts with these objects. Bootstrapping is available for :py:class:`~climpred.classes.HindcastEnsemble`. Spatial dimensions can be passed to metrics to do things like pattern correlation. New metrics have been implemented based on Contingency tables. We now include an early version of bias removal for :py:class:`~climpred.classes.HindcastEnsemble`.
Use math operations like
+-*/
with :py:class:`~climpred.classes.HindcastEnsemble` and :py:class:`~climpred.classes.PerfectModelEnsemble`. See a demo of this here (:pr:`377`) Aaron Spring.Subselect data variables from
PredictionEnsemble
as fromxr.Dataset
:PredictionEnsemble[['var1', 'var3']]
(:pr:`409`) Aaron Spring.Plot all datasets in :py:class:`~climpred.classes.HindcastEnsemble` or :py:class:`~climpred.classes.PerfectModelEnsemble` by :py:meth:`~climpred.classes.PredictionEnsemble.plot` if no other spatial dimensions are present. (:pr:`383`) Aaron Spring.
Bootstrapping now available for :py:class:`~climpred.classes.HindcastEnsemble` as :py:meth:`~climpred.classes.HindcastEnsemble.bootstrap`, which is analogous to the :py:class:`~climpred.classes.PerfectModelEnsemble` method (:issue:`257`, :pr:`418`) Aaron Spring.
:py:meth:`~climpred.classes.HindcastEnsemble.verify` allows all dimensions from
initialized
ensemble asdim
. This allows e.g. spatial dimensions to be used for pattern correlation. Make sure to useskipna=True
when using spatial dimensions and output has nans (in the case of land, for instance) (:issue:`282`, :pr:`407`) Aaron Spring.Allow binary forecasts at when calling :py:meth:`~climpred.classes.HindcastEnsemble.verify`, rather than needing to supply binary results beforehand. In other words,
hindcast.verify(metric='brier_score', comparison='m2o', dim='member', logical=logical)
is now the same ashindcast.map(logical).verify(metric='brier_score', comparison='m2o', dim='member'
. (:pr:`431`) Aaron Spring.Check calendar types when using :py:meth:`~climpred.classes.HindcastEnsemble.add_observations`, :py:meth:`~climpred.classes.HindcastEnsemble.add_uninitialized`, :py:meth:`~climpred.classes.PerfectModelEnsemble.add_control` to ensure that the verification data calendars match that of the initialized ensemble. (:issue:`300`, :pr:`452`, :issue:`422`, :pr:`462`) Riley X. Brady and Aaron Spring.
Implement new metrics which have been ported over from https://github.com/csiro-dcfp/doppyo/ to
xskillscore
by Dougie Squire. (:pr:`439`, :pr:`456`) Aaron Spring- rank histogram :py:func:`~climpred.metrics._rank_histogram`
- discrimination :py:func:`~climpred.metrics._discrimination`
- reliability :py:func:`~climpred.metrics._reliability`
- ranked probability score :py:func:`~climpred.metrics._rps`
- contingency table and related scores :py:func:`~climpred.metrics._contingency`
Perfect Model :py:meth:`~climpred.classes.PerfectModelEnsemble.verify` no longer requires
control
in :py:class:`~climpred.classes.PerfectModelEnsemble`. It is only required whenreference=['persistence']
. (:pr:`461`) Aaron Spring.Implemented bias removal :py:class:`~climpred.classes.HindcastEnsemble.remove_bias`.
remove_bias(how='mean')
removes the mean bias of initialized hindcasts with respect to observations. See example. (:pr:`389`, :pr:`443`, :pr:`459`) Aaron Spring and Riley X. Brady.
spatial_smoothing_xrcoarsen
no longer used for spatial smoothing. (:pr:`391`) Aaron Spring.compute_metric
,compute_uninitialized
andcompute_persistence
no longer in use for :py:class:`~climpred.classes.PerfectModelEnsemble` in favor of :py:meth:`~climpred.classes.PerfectModelEnsemble.verify` with thereference
keyword instead. (:pr:`436`, :issue:`468`, :pr:`472`) Aaron Spring and Riley X. Brady.'historical'
no longer a valid choice forreference
. Use'uninitialized'
instead. (:pr:`478`) Aaron Spring.
- :py:meth:`~climpred.classes.PredictionEnsemble.verify` and
:py:meth:`~climpred.classes.PredictionEnsemble.bootstrap` now accept
metric_kwargs
. (:pr:`387`) Aaron Spring. - :py:meth:`~climpred.classes.PerfectModelEnsemble.verify` now accepts
'uninitialized'
as a reference. (:pr:`395`) Riley X. Brady. - Spatial and temporal smoothing :py:meth:`~climpred.classes.PredictionEnsemble.smooth` now work as expected and rename time dimensions after :py:meth:`~climpred.classes.PredictionEnsembleEnsemble.verify`. (:pr:`391`) Aaron Spring.
PredictionEnsemble.verify(comparison='m2o', references=['uninitialized', 'persistence']
does not fail anymore. (:issue:`385`, :pr:`400`) Aaron Spring.- Remove bias using
dayofyear
in :py:meth:`~climpred.classes.HindcastEnsemble.reduce_bias`. (:pr:`443`) Aaron Spring. climpred
works withdask=>2.28
. (:issue:`479`, :pr:`482`) Aaron Spring.
- Updates
climpred
tagline to "Verification of weather and climate forecasts." (:pr:`420`) Riley X. Brady. - Adds section on how to use arithmetic with :py:class:`~climpred.classes.HindcastEnsemble`. (:pr:`378`) Riley X. Brady.
- Add docs section for similar open-source forecasting packages. (:pr:`432`) Riley X. Brady.
- Add all metrics to main API in addition to metrics page. (:pr:`438`) Riley X. Brady.
- Add page on bias removal Aaron Spring.
- :py:meth:`~climpred.classes.PredictionEnsemble.verify` replaces deprecated
PerfectModelEnsemble.compute_metric()
and acceptsreference
as keyword. (:pr:`387`) Aaron Spring. - Cleared out unnecessary statistics functions from
climpred
and migrated them toesmtools
. Addesmtools
as a required package. (:pr:`395`) Riley X. Brady. - Remove fixed pandas dependency from
pandas=0.25
to stablepandas
. (:issue:`402`, :pr:`403`) Aaron Spring. dim
is expected to be a list of strings in :py:func:`~climpred.prediction.compute_perfect_model` and :py:func:`~climpred.prediction.compute_hindcast`. (:issue:`282`, :pr:`407`) Aaron Spring.- Update
cartopy
requirement to 0.0.18 or greater to release lock onmatplotlib
version. Updatexskillscore
requirement to 0.0.18 to cooperate with newxarray
version. (:pr:`451`, :pr:`449`) Riley X. Brady - Switch from Travis CI and Coveralls to Github Actions and CodeCov. (:pr:`471`) Riley X. Brady
- Assertion functions added for :py:class:`~climpred.classes.PerfectModelEnsemble`: :py:func:`~climpred.testing.assert_PredictionEnsemble`. (:pr:`391`) Aaron Spring.
- Test all metrics against synthetic data. (:pr:`388`) Aaron Spring.
- Keyword
bootstrap
has been replaced withiterations
. We feel that this more accurately describes the argument, since "bootstrap" is really the process as a whole. (:pr:`354`) Aaron Spring.
:py:class:`~climpred.classes.HindcastEnsemble` and :py:class:`~climpred.classes.PerfectModelEnsemble` now use an HTML representation, following the more recent versions of
xarray
. (:pr:`371`) Aaron Spring.HindcastEnsemble.verify()
now takesreference=...
keyword. Current options are'persistence'
for a persistence forecast of the observations and'uninitialized'
for an uninitialized/historical reference, such as an uninitialized/forced run. (:pr:`341`) Riley X. Brady.We now only enforce a union of the initialization dates with observations if
reference='persistence'
for :py:class:`~climpred.classes.HindcastEnsemble`. This is to ensure that the same set of initializations is used by the observations to construct a persistence forecast. (:pr:`341`) Riley X. Brady.:py:func:`~climpred.prediction.compute_perfect_model` now accepts initialization (
init
) ascftime
andint
.cftime
is now implemented into the bootstrap uninitialized functions for the perfect model configuration. (:pr:`332`) Aaron Spring.New explicit keywords in bootstrap functions for
resampling_dim
andreference_compute
(:pr:`320`) Aaron Spring.Logging now included for
compute_hindcast
which displays theinits
and verification dates used at each lead (:pr:`324`) Aaron Spring, (:pr:`338`) Riley X. Brady. See (logging).New explicit keywords added for
alignment
of verification dates and initializations. (:pr:`324`) Aaron Spring. See (alignment)'maximize'
: Maximize the degrees of freedom by slicinghind
andverif
to a common time frame at each lead. (:pr:`338`) Riley X. Brady.'same_inits'
: slice to a common init frame prior to computing metric. This philosophy follows the thought that each lead should be based on the same set of initializations. (:pr:`328`) Riley X. Brady.'same_verifs'
: slice to a common/consistent verification time frame prior to computing metric. This philosophy follows the thought that each lead should be based on the same set of verification dates. (:pr:`331`) Riley X. Brady.
The major change for this release is a dramatic speedup in bootstrapping functions, led by
Aaron Spring. We focused on scalability with dask
and found many places we could compute
skill simultaneously over all bootstrapped ensemble members rather than at each iteration.
Bootstrapping uninitialized skill in the perfect model framework is now sped up significantly for annual lead resolution. (:pr:`332`) Aaron Spring.
General speedup in :py:func:`~climpred.bootstrap.bootstrap_hindcast` and :py:func:`~climpred.bootstrap.bootstrap_perfect_model`: (:pr:`285`) Aaron Spring.
- Properly implemented handling for lazy results when inputs are chunked.
- User gets warned when chunking potentially unnecessarily and/or inefficiently.
- Alignment options now account for differences in the historical time series if
reference='historical'
. (:pr:`341`) Riley X. Brady.
- Added a Code of Conduct (:pr:`285`) Aaron Spring.
- Gather
pytest.fixture in ``conftest.py
. (:pr:`313`) Aaron Spring. - Move
x_METRICS
andCOMPARISONS
tometrics.py
andcomparisons.py
in order to avoid circular import dependencies. (:pr:`315`) Aaron Spring. asv
benchmarks added forHindcastEnsemble
(:pr:`285`) Aaron Spring.- Ignore irrelevant warnings in
pytest
and mark slow tests (:pr:`333`) Aaron Spring. - Default
CONCAT_KWARGS
now in allxr.concat
to speed up bootstrapping. (:pr:`330`) Aaron Spring. - Remove
member
coords form2c
comparison for probabilistic metrics. (:pr:`330`) Aaron Spring. - Refactored :py:func:`~climpred.prediction.compute_hindcast` and :py:func:`~climpred.prediction.compute_perfect_model`. (:pr:`330`) Aaron Spring.
- Changed lead0 coordinate modifications to be compliant with
xarray=0.15.1
in :py:func:`~climpred.reference.compute_persistence`. (:pr:`348`) Aaron Spring. - Exchanged
my_quantile
withxr.quantile(skipna=False)
. (:pr:`348`) Aaron Spring. - Remove
sig
from :py:func:`~climpred.graphics.plot_bootstrapped_skill_over_leadyear`. (:pr:`351`) Aaron Spring. - Require
xskillscore v0.0.15
and use their functions for effective sample size-based metrics. (:pr: 353) Riley X. Brady. - Faster bootstrapping without replacement used in threshold functions of
climpred.stats
(:pr:`354`) Aaron Spring. - Require
cftime v1.1.2
, which modifies their object handling to create 200-400x speedups in some basic operations. (:pr:`356`) Riley X. Brady. - Resample first and then calculate skill in :py:func:`~climpred.bootstrap.bootstrap_perfect_model` and :py:func:`~climpred.bootstrap.bootstrap_hindcast` (:pr:`355`) Aaron Spring.
- Added demo to setup your own raw model output compliant to
climpred
(:pr:`296`) Aaron Spring. See (here). - Added demo using
intake-esm
withclimpred
(:pr:`296`) Aaron Spring. See (here). - Added Verification Alignment page explaining how initializations are selected and aligned with verification data. (:pr:`328`) Riley X. Brady. See (here).
- Add support for
days
,pentads
,weeks
,months
,seasons
for lead time resolution.climpred
now requires alead
attribute "units" to decipher what resolution the predictions are at. (:pr:`294`) Kathy Pegion and Riley X. Brady.
>>> hind = climpred.tutorial.load_dataset('CESM-DP-SST')
>>> hind.lead.attrs['units'] = 'years'
HindcastEnsemble
now has.add_observations()
and.get_observations()
methods. These are the same as.add_reference()
and.get_reference()
, which will be deprecated eventually. The name change clears up confusion, since "reference" is the appropriate name for a reference forecast, e.g. persistence. (:pr:`310`) Riley X. Brady.HindcastEnsemble
now has.verify()
function, which duplicates the.compute_metric()
function. We feel that.verify()
is more clear and easy to write, and follows the terminology of the field. (:pr:`310`) Riley X. Brady.e2o
andm2o
are now the preferred keywords for comparing hindcast ensemble means and ensemble members to verification data, respectively. (:pr:`310`) Riley X. Brady.
New example pages for subseasonal-to-seasonal prediction using
climpred
. (:pr:`294`) Kathy PegionComparisons page rewritten for more clarity. (:pr:`310`) Riley X. Brady.
- Fixed m2m broken comparison issue and removed correction (:pr:`290`) Aaron Spring.
- Updates to
xskillscore
v0.0.12 to get a 30-50% speedup in compute functions that rely on metrics from there. (:pr:`309`) Riley X. Brady. - Stacking dims is handled by
comparisons
, no need for internal keywordstack_dims
. Thereforecomparison
now takesmetric
as argument instead. (:pr:`290`) Aaron Spring. assign_attrs
now carries dim (:pr:`290`) Aaron Spring.reference
changed toverif
throughout hindcast compute functions. This is more clear, sincereference
usually refers to a type of forecast, such as persistence. (:pr:`310`) Riley X. Brady.Comparison
objects can now have aliases. (:pr:`310`) Riley X. Brady.
mad
no longer a keyword for the median absolute error metric. Users should now usemedian_absolute_error
, which is identical to changes inxskillscore
version 0.0.10. (:pr:`283`) Riley X. Bradypacc
no longer a keyword for the p value associated with the Pearson product-moment correlation, since it is used by the correlation coefficient. (:pr:`283`) Riley X. Bradymsss
no longer a keyword for the Murphy's MSSS, since it is reserved for the standard MSSS. (:pr:`283`) Riley X. Brady
Metrics
pearson_r_eff_p_value
andspearman_r_eff_p_value
account for autocorrelation in computing p values. (:pr:`283`) Riley X. BradyMetric
effective_sample_size
computes number of independent samples between two time series being correlated. (:pr:`283`) Riley X. BradyAdded keywords for metrics: (:pr:`283`) Riley X. Brady
'pval'
forpearson_r_p_value
['n_eff', 'eff_n']
foreffective_sample_size
['p_pval_eff', 'pvalue_eff', 'pval_eff']
forpearson_r_eff_p_value
['spvalue', 'spval']
forspearman_r_p_value
['s_pval_eff', 'spvalue_eff', 'spval_eff']
forspearman_r_eff_p_value
'nev'
fornmse
climpred
now requiresxarray
version 0.14.1 so that thedrop_vars()
keyword used in our package does not throw an error. (:pr:`276`) Riley X. Brady- Update to
xskillscore
version 0.0.10 to fix errors in weighted metrics with pairwise NaNs. (:pr:`283`) Riley X. Brady doc8
added topre-commit
to have consistent formatting on.rst
files. (:pr:`283`) Riley X. Brady- Remove
proper
attribute onMetric
class since it isn't used anywhere. (:pr:`283`) Riley X. Brady - Add testing for effective p values. (:pr:`283`) Riley X. Brady
- Add testing for whether metric aliases are repeated/overwrite each other. (:pr:`283`) Riley X. Brady
ppp
changed tomsess
, but keywords allow forppp
andmsss
still. (:pr:`283`) Riley X. Brady
- Expansion of metrics documentation with much more detail on how metrics are computed, their keywords, references, min/max/perfect scores, etc. (:pr:`283`) Riley X. Brady
- Update terminology page with more information on metrics terminology. (:pr:`283`) Riley X. Brady
- Abbreviation
pval
depreciated. Usep_pval
forpearson_r_p_value
instead. (:pr:`264`) Aaron Spring.
Users can now pass a custom
metric
orcomparison
to compute functions. (:pr:`268`) Aaron Spring.New deterministic metrics (see metrics). (:pr:`264`) Aaron Spring.
- Spearman ranked correlation (spearman_r)
- Spearman ranked correlation p-value (spearman_r_p_value)
- Mean Absolute Deviation (mad)
- Mean Absolute Percent Error (mape)
- Symmetric Mean Absolute Percent Error (smape)
Users can now apply arbitrary
xarray
methods to :py:class:`~climpred.classes.HindcastEnsemble` and :py:class:`~climpred.classes.PerfectModelEnsemble`. (:pr:`243`) Riley X. Brady.Add "getter" methods to :py:class:`~climpred.classes.HindcastEnsemble` and :py:class:`~climpred.classes.PerfectModelEnsemble` to retrieve
xarray
datasets from the objects. (:pr:`243`) Riley X. Brady.>>> hind = climpred.tutorial.load_dataset('CESM-DP-SST') >>> ref = climpred.tutorial.load_dataset('ERSST') >>> hindcast = climpred.HindcastEnsemble(hind) >>> hindcast = hindcast.add_reference(ref, 'ERSST') >>> print(hindcast) <climpred.HindcastEnsemble> Initialized Ensemble: SST (init, lead, member) float64 ... ERSST: SST (time) float32 ... Uninitialized: None >>> print(hindcast.get_initialized()) <xarray.Dataset> Dimensions: (init: 64, lead: 10, member: 10) Coordinates: * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 * member (member) int32 1 2 3 4 5 6 7 8 9 10 * init (init) float32 1954.0 1955.0 1956.0 1957.0 ... 2015.0 2016.0 2017.0 Data variables: SST (init, lead, member) float64 ... >>> print(hindcast.get_reference('ERSST')) <xarray.Dataset> Dimensions: (time: 61) Coordinates: * time (time) int64 1955 1956 1957 1958 1959 ... 2011 2012 2013 2014 2015 Data variables: SST (time) float32 ...
metric_kwargs
can be passed to :py:class:`~climpred.metrics.Metric`. (:pr:`264`) Aaron Spring.- See
metric_kwargs
under metrics.
- See
- :py:meth:`~climpred.classes.HindcastEnsemble.compute_metric` doesn't drop coordinates from the initialized hindcast ensemble anymore. (:pr:`258`) Aaron Spring.
- Metric
uacc
does not crash whenppp
negative anymore. (:pr:`264`) Aaron Spring. - Update
xskillscore
to version 0.0.9 to fix all-NaN issue withpearson_r
andpearson_r_p_value
when there's missing data. (:pr:`269`) Riley X. Brady.
Rewrote :py:func:`~climpred.stats.varweighted_mean_period` based on
xrft
. Changedtime_dim
todim
. Function no longer drops coordinates. (:pr:`258`) Aaron SpringAdd
dim='time'
in :py:func:`~climpred.stats.dpp`. (:pr:`258`) Aaron SpringComparisons
m2m
,m2e
rewritten to not stack dims into supervector because this is now done inxskillscore
. (:pr:`264`) Aaron SpringAdd
tqdm
progress bar to :py:func:`~climpred.bootstrap.bootstrap_compute`. (:pr:`244`) Aaron SpringRemove inplace behavior for :py:class:`~climpred.classes.HindcastEnsemble` and :py:class:`~climpred.classes.PerfectModelEnsemble`. (:pr:`243`) Riley X. Brady
Added tests for chunking with
dask
. (:pr:`258`) Aaron SpringFix test issues with esmpy 8.0 by forcing esmpy 7.1 (:pr:`269`). Riley X. Brady
Rewrote
metrics
andcomparisons
as classes to accomodate custom metrics and comparisons. (:pr:`268`) Aaron Spring
- Add examples notebook for temporal and spatial smoothing. (:pr:`244`) Aaron Spring
- Add documentation for computing a metric over a specified dimension. (:pr:`244`) Aaron Spring
- Update API to be more organized with individual function/class pages. (:pr:`243`) Riley X. Brady.
- Add page describing the :py:class:`~climpred.classes.HindcastEnsemble` and :py:class:`~climpred.classes.PerfectModelEnsemble` objects more clearly. (:pr:`243`) Riley X. Brady
- Add page for publications and helpful links. (:pr:`270`) Riley X. Brady.
- Write information about skill computation to netcdf attributes(:pr:`213`) Aaron Spring
- Temporal and spatial smoothing module (:pr:`224`) Aaron Spring
- Add metrics brier_score, threshold_brier_score and crpss_es (:pr:`232`) Aaron Spring
- Allow compute_hindcast and compute_perfect_model to specify which dimension dim to calculate metric over (:pr:`232`) Aaron Spring
- Correct implementation of probabilistic metrics from xskillscore in compute_perfect_model, bootstrap_perfect_model, compute_hindcast and bootstrap_hindcast, now requires xskillscore>=0.05 (:pr:`232`) Aaron Spring
- Rename .stats.DPP to dpp (:pr:`232`) Aaron Spring
- Add matplotlib as a main dependency so that a direct pip installation works (:pr:`211`) Riley X. Brady.
climpred
is now installable from conda-forge (:pr:`212`) Riley X. Brady.- Fix erroneous descriptions of sample datasets (:pr:`226`) Riley X. Brady.
- Benchmarking time and peak memory of compute functions with asv (:pr:`231`) Aaron Spring
- Add scope of package to docs for clarity for users and developers. (:pr:`235`) Riley X. Brady.
- Accomodate for lead-zero within the
lead
dimension (:pr:`196`) Riley X. Brady. - Fix issue with adding uninitialized ensemble to
HindcastEnsemble
object (:pr:`199`) Riley X. Brady. - Allow
max_dof
keyword to be passed tocompute_metric
andcompute_persistence
forHindcastEnsemble
(:pr:`199`) Riley X. Brady.
- Force
xskillscore
version 0.0.4 or higher to avoidImportError
(:pr:`204`) Riley X. Brady. - Change
max_dfs
keyword tomax_dof
(:pr:`199`) Riley X. Brady. - Add testing for
HindcastEnsemble
andPerfectModelEnsemble
(:pr:`199`) Riley X. Brady
climpred
v1.0.0 represents the first stable release of the package. It includes
HindcastEnsemble
and PerfectModelEnsemble
objects to perform analysis with.
It offers a suite of deterministic and probabilistic metrics that are optimized to be
run on single time series or grids of data (e.g., lat, lon, and depth). Currently,
climpred
only supports annual forecasts.
- Bootstrap prediction skill based on resampling with replacement consistently in
ReferenceEnsemble
andPerfectModelEnsemble
. (:pr:`128`) Aaron Spring - Consistent bootstrap function for
climpred.stats
functions viabootstrap_func
wrapper. (:pr:`167`) Aaron Spring - many more metrics:
_msss_murphy
,_less
and probabilistic_crps
,_crpss
(:pr:`128`) Aaron Spring
compute_uninitialized
now trims input data to the same time window. (:pr:`193`) Riley X. Bradyrm_poly
now properly interpolates/fills NaNs. (:pr:`192`) Riley X. Brady
- The
climpred
version can be printed. (:pr:`195`) Riley X. Brady - Constants are made elegant and pushed to a separate module. (:pr:`184`) Andrew Huang
- Checks are consolidated to their own module. (:pr:`173`) Andrew Huang
- Documentation built extensively in multiple PRs.
climpred
v0.3 really represents the entire development phase leading up to the
version 1 release. This was done in collaboration between Riley X. Brady,
Aaron Spring, and Andrew Huang. Future releases will have less additions.
Introduces object-oriented system to
climpred
, with classesReferenceEnsemble
andPerfectModelEnsemble
. (:pr:`86`) Riley X. BradyExpands bootstrapping module for perfect-module configurations. (:pr:`78`, :pr:`87`) Aaron Spring
Adds functions for computing Relative Entropy (:pr:`73`) Aaron Spring
Sets more intelligible dimension expectations for
climpred
(:pr:`98`, :pr:`105`) Riley X. Brady and Aaron Spring:init
: initialization dates for the prediction ensemblelead
: retrospective forecasts from prediction ensemble; returned dimension for prediction calculationstime
: time dimension for control runs, references, etc.member
: ensemble member dimension.
Updates
open_dataset
to display available dataset names when no argument is passed. (:pr:`123`) Riley X. BradyChange
ReferenceEnsemble
toHindcastEnsemble
. (:pr:`124`) Riley X. BradyAdd probabilistic metrics to
climpred
. (:pr:`128`) Aaron SpringConsolidate separate perfect-model and hindcast functions into singular functions (:pr:`128`) Aaron Spring
Add option to pass proxy through to
open_dataset
for firewalled networks. (:pr:`138`) Riley X. Brady
xr_rm_poly
can now operate on Datasets and with multiple variables. It also interpolates across NaNs in time series. (:pr:`94`) Andrew Huang- Travis CI,
treon
, andpytest
all run for automated testing of new features. (:pr:`98`, :pr:`105`, :pr:`106`) Riley X. Brady and Aaron Spring - Clean up
check_xarray
decorators and make sure that they work. (:pr:`142`) Andrew Huang - Ensures that
help()
returns proper docstring even with decorators. (:pr:`149`) Andrew Huang - Fixes bootstrap so p values are correct. (:pr:`170`) Aaron Spring
- Adds unit testing for all perfect-model comparisons. (:pr:`107`) Aaron Spring
- Updates CESM-LE uninitialized ensemble sample data to have 34 members. (:pr:`113`) Riley X. Brady
- Adds MPI-ESM hindcast, historical, and assimilation sample data. (:pr:`119`) Aaron Spring
- Replaces
check_xarray
with a decorator for checking that input arguments are xarray objects. (:pr:`120`) Andrew Huang - Add custom exceptions for clearer error reporting. (:pr:`139`) Riley X. Brady
- Remove "xr" prefix from stats module. (:pr:`144`) Riley X. Brady
- Add codecoverage for testing. (:pr:`152`) Riley X. Brady
- Update exception messages for more pretty error reporting. (:pr:`156`) Andrew Huang
- Add
pre-commit
andflake8
/black
check in CI. (:pr:`163`) Riley X. Brady - Change
loadutils
module totutorial
andopen_dataset
toload_dataset
. (:pr:`164`) Riley X. Brady - Remove predictability horizon function to revisit for v2. (:pr:`165`) Riley X. Brady
- Increase code coverage through more testing. (:pr:`167`) Aaron Spring
- Consolidates checks and constants into modules. (:pr:`173`) Andrew Huang
Name changed to climpred
, developed enough for basic decadal prediction tasks on a
perfect-model ensemble and reference-based ensemble.
Collaboration between Riley Brady and Aaron Spring begins.