-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRobot.py
996 lines (867 loc) · 36.6 KB
/
Robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
#!/usr/bin/python
# -*- coding: UTF-8 -*-
from __future__ import print_function # use python 3 syntax but make it compatible with python 2
from __future__ import division # ''
import brickpi3 # import the BrickPi3 drivers
import time # import the time library for the sleep function
import sys
import cv2
import picamera
import datetime
import numpy as np
from picamera.array import PiRGBArray
from utils.utils import *
from geometry.geometry import *
# tambien se podria utilizar el paquete de threading
from multiprocessing import Process, Value, Array, Lock
from camera.color_blobs import *
from p4.MapLib import *
from trabajo.sample_matching import match_images
DEBUG_MODE=False # show less prints
resolution=[320,240] # camera resolution
black=2500 # floor sensor black threshold
white=1970 # floor sensor white threshold
class Robot:
"""
All units are in the international system unless specified (and angles in rad)
"""
def __init__(self, init_position=[0.0, 0.0, 0.0]):
"""
Initialize basic robot params.
Initialize Motors and Sensors according to the set up in GUILLE
"""
##################################################
# Robot construction parameters
self.R_rueda = 0.027
self.L = 0.140
self.eje_rueda = self.L/2.0
self.len_color_eje = 0.11 # longitud del detector de color al eje
self.offset_right = 1.0#0.9995 # The way the bot is built, the left tire spins slightly slower than right
##################################################
# Camera initialization
self.cam = picamera.PiCamera()
self.cam.resolution = tuple(resolution)
self.cam.framerate = 60
self.rawCapture = PiRGBArray(self.cam, size=tuple(resolution))
self.cam.rotation=180
##################################################
self.BP = brickpi3.BrickPi3()
##################################################
# Speed parameters
self.wmax = math.pi/3
self.vmax = 1.0/4.0
self.vTarget = self.vmax
self.wTarget = self.wmax * 0.4 #/2
self.rotIzqDeg = 0
self.rotDchaDeg = 0
self.useGyro = True
##################################################
# Ball parameters
self.ballArea = 65
self.ballClawsArea = 60
self.ballX = resolution[0]/2.0
self.ballDistance = 0.36
##################################################
# Sensors and motors
self.lock_garras = Lock()
self.closing = Value('b',0)
self.ruedaIzq = self.BP.PORT_D
self.ruedaDcha = self.BP.PORT_A
self.motorGarras = self.BP.PORT_C
self.maxRotGarras = 70 # angulo de giro de las garras 30 grados
self.BP.offset_motor_encoder(self.ruedaIzq,
self.BP.get_motor_encoder(self.ruedaIzq))
self.BP.offset_motor_encoder(self.ruedaDcha,
self.BP.get_motor_encoder(self.ruedaDcha))
#################################################
##Adjust Claws to be closed
posClawsIni = self.BP.get_motor_encoder(self.motorGarras)
if(posClawsIni < -5 or posClawsIni > 0):
print("Adjusting claws")
while(posClawsIni < -5):
self.BP.set_motor_dps(self.motorGarras, 20)
posClawsIni = self.BP.get_motor_encoder(self.motorGarras)
while(posClawsIni > 0):
self.BP.set_motor_dps(self.motorGarras, -20)
posClawsIni = self.BP.get_motor_encoder(self.motorGarras)
self.BP.set_motor_dps(self.motorGarras, 0)
#################################################
# ultrasonic
self.portSensorUltrasonic = self.BP.PORT_4
self.BP.set_sensor_type(self.portSensorUltrasonic, self.BP.SENSOR_TYPE.EV3_ULTRASONIC_CM)
self.min_cells=1 # cm
#################
# light sensor
self.portSensorLight = self.BP.PORT_1
self.BP.set_sensor_type(self.portSensorLight, self.BP.SENSOR_TYPE.NXT_LIGHT_ON)
#################
# gyro:
self.portGyro= self.BP.PORT_2
self.BP.set_sensor_type(self.portGyro, self.BP.SENSOR_TYPE.EV3_GYRO_ABS)
####################################################################################################
# odometry shared memory values
# usar parametro
self.x = Value('d',0.0)
self.y = Value('d',0.0)
self.th = Value('d',0.0)
self.th_abs = Value('d',0.0) # absoluto, solo se debe usar para restar dos valores
self.finished = Value('b',1) # boolean to show if odometry updates are finished
self.changeClaws = Value('b',1)
self.tLast = time.perf_counter()
self.tInitialization = self.tLast
# if we want to block several instructions to be run together, we may want to use an explicit Lock
self.lock_odometry = Lock()
self.detectorLock = Lock()
# odometry update period
self.P = 0.05
####################################################################################################
# Logs
now = datetime.datetime.now()
self.f_log = open("logs/{:d}-{:d}-{:d}-{:02d}_{:02d}".format(now.year, now.month, now.day, now.hour, now.minute)+"-log.txt","a")#append
fila = ["t", "x", "y", "th", "v", "w", "dTh", "dSi"]
self.f_log.write("\t".join([str(e) for e in fila]) + "\n")
self.f_log.flush()
####################################################################################################
### Homographies:
self.templateR2D2 = cv2.imread("trabajo/R2-D2_s.png", cv2.IMREAD_COLOR)
self.templateBB8 = cv2.imread("trabajo/BB8_s.png", cv2.IMREAD_COLOR)
time.sleep(5)
####################################################################################################
# SPEED FUNCTIONS
def setSpeed(self, v, w):
"""
Sets the speed as degrees PS to each motor according to
v (linear ms) and w (angular rad s)
"""
wDI = izqDchaFromVW(self.R_rueda, self.L, v, w)
wD = wDI[0]
wI = wDI[1]
speedDPS_left = wI/math.pi*180
speedDPS_right = self.offset_right*wD/math.pi*180
self.BP.set_motor_dps(self.ruedaIzq, speedDPS_left)
self.BP.set_motor_dps(self.ruedaDcha, speedDPS_right)
def readSpeedIzqDcha(self, dT):
"""
Returns vL, vD as DPS of the wheels (left, right)
"""
try:
izq = self.BP.get_motor_encoder(self.ruedaIzq)
dcha = self.BP.get_motor_encoder(self.ruedaDcha)
izq_bk = izq
dcha_bk = dcha
izq = izq-self.rotIzqDeg
dcha = dcha-self.rotDchaDeg
self.rotIzqDeg = izq_bk
self.rotDchaDeg = dcha_bk
return izq/dT, dcha/dT
except IOError as error:
sys.stdout.write(error)
def readSpeed(self, dT):
"""
In: dT = delta of time
Returns v,w (in m/s and rad/s) according to the motor encoders
"""
izq, dcha = self.readSpeedIzqDcha(dT)
wI = np.radians(izq)
wD = np.radians(dcha)
v,w = vWiFromIzqDcha(self.R_rueda, self.L, wI, wD)
return v, w
####################################################################################################
# Trajectories functions
def setTrajectory(self,trajectory):
"""
Sets the trajectory to perform (class geometry.Trajectory)
"""
self.trajectory = trajectory
def executeTrajectory_time(self):
"""
Executes the saved trajectory (sequence of v,w and t)
"""
for move in self.trajectory.movements:
self.setSpeed(move.vc[0], move.vc[1])
time.sleep(move.t)
def closeEnough(self, target, w):
"""
In: target [x, y, th] (any value can be None),
w (angular speed)
Out: True if the target has been reached according to the odometry.
Only non-None values are checked
"""
odo = self.readOdometry()
close = False
if target[0] == None and target[1] == None and target[2] == None:
close = True
elif target[0] == None and target[1] == None: # only angle
if self.useGyro: # test according to gyro
return reachedAngleGyro(np.radians(self.angleGyro() - self.turnedGyro), target[2], w)
else: # test with odo
return reachedAngle(odo[2], target[2], w)
else: # check positions
sinth = np.sin(odo[2])
costh = np.cos(odo[2])
cond1 = True
cond2 = True
if target[0] != None:
cond1 = reached(odo[0],target[0], costh>=0)
if target[1] != None:
cond2 = reached(odo[1],target[1],sinth>=0)
if cond1 and cond2:
close = True
return close
def setTurnedGyro(self):
"""
Save current gyro angle for future comparisons
"""
self.turnedGyro = self.angleGyro()
def executeTrajectory(self):
"""
Executes the saved trajectory (sequence of v,w and t)
Time-based version
"""
period = 0.05
for i in range(len(self.trajectory.targetPositions)):
print("Paso:", i, "----------------------------")
self.setTurnedGyro()
v = self.trajectory.targetV[i]
w = self.trajectory.targetW[i]
self.setSpeed(v, w)
end = False
while not end:
tIni = time.perf_counter()
end = self.closeEnough(self.trajectory.targetPositions[i], w)
if not end:
tFin = time.perf_counter()
time.sleep(period-(tFin-tIni))
self.setSpeed(0, 0)
####################################################################################################
# ODOMETRY FUNCTIONS
def deltaX(self, deltaSi, deltaTh):
"""
In:
deltaSi: variation in space (tangent) since last timestamp
deltaTh: variation in angle since last
Returns:
deltaX: variation in X coordinate (local)
"""
# readSpeed debe devolver v,w
return deltaSi*np.cos(self.th.value + deltaTh/2.0)
def deltaY(self, deltaSi, deltaTh):
"""
In:
deltaSi: variation in space (tangent) since last timestamp
deltaTh: variation in angle since last
Returns:
deltaY: variation in Y coordinate (local)
"""
return deltaSi*np.sin(self.th.value + deltaTh/2.0)
def startOdometry(self):
""" This starts a new process/thread that will be updating the odometry periodically """
self.finished.value = False
self.p = Process(target=self.updateOdometry, args=()) #additional_params?))
self.p.start()
print("PID: ", self.p.pid)
def readOdometry(self):
""" Returns current value of odometry estimation """
return self.x.value, self.y.value, self.th.value
# You may want to pass additional shared variables besides the odometry values and stop flag
def updateOdometry(self): #, additional_params?):
"""
Updates self.x, .y and .th according to the change in the motor encoders
Writes a row in the log
"""
while not self.finished.value:
# current processor time in a floating point value, in seconds
tIni = time.perf_counter()
dT = tIni-self.tLast
self.tLast = tIni
v, w = self.readSpeed(dT) # usar distancias de encoders directamente
deltaTh = norm_pi(w*dT)
eps = 0.01
if -eps < deltaTh < eps:
deltaSi = v*dT
else:
deltaSi = v/w*deltaTh
#print("deltaSi: ", deltaSi)
deltax = self.deltaX(deltaSi,deltaTh)
deltay = self.deltaY(deltaSi,deltaTh)
th_abs = self.th_abs.value+deltaTh
th = norm_pi(self.th.value+deltaTh)
self.lock_odometry.acquire()
# reducir SC (deltaX, etc)
self.x.value += deltax
self.y.value += deltay
self.th.value = th
self.th_abs.value = th_abs # only used for some comparisons
self.lock_odometry.release()
# write a row to the log:
writeLog(self.f_log, [self.tLast-self.tInitialization, self.x.value, self.y.value, self.th.value, v, w, deltaTh, deltaSi])
tEnd = time.perf_counter()
time.sleep(max(self.P - (tEnd-tIni),0))
sys.stdout.write("Stopping odometry ... X= %.2f, \
Y= %.2f, th= %.2f \n" % (self.x.value, self.y.value, self.th.value))
def setOdometry(self, value):
"""
Sets the odometry to any value [x,y,th] (in m,m,rad)
"""
self.lock_odometry.acquire()
self.finished.value = True
self.x.value = value[0]
self.y.value = value[1]
self.th.value = value[2]
self.finished.value = False
self.lock_odometry.release()
# Stop the odometry thread.
def stopOdometry(self):
"""
Stops odometry and sets the speed of all motors to 0
"""
self.finished.value = True
self.f_log.close()
self.setSpeed(0,0)
self.BP.set_motor_dps(self.motorGarras, 0)
self.BP.reset_all()
####################################################################################################
# TRACKING FUNCTIONS
def trackBall(self):
"""
Tracks and catches the red ball
"""
self.trackObject(self.ballArea, self.ballX, self.ballClawsArea, True, 5)
def trackObject(self, targetSize, targetX = resolution[0]/2.0, targetClawsSize = 0, mustCatch = False, eps = 5):
"""
Tracks an object with the given parameters, tries to catch it with the claws when its close enough.
The robot spins at a constant rate while it doesnt detect the object
"""
targetPositionReached = False
# abrir garras, en paralelo:
garrasAbiertas=True
self.catch()
# inicializar detector:
detector = init_detector()
period = 0.05
vFin = self.vTarget / 2
for img in self.cam.capture_continuous(self.rawCapture, format="bgr", use_video_port=True):# todo: sleep como antes
tIni = time.perf_counter()
frame = img.array
kp = search_blobs_detector(self.cam, frame, detector, verbose = False, show=False)
self.rawCapture.truncate(0)
if DEBUG_MODE and kp is None:
print("No se donde esta la bola")
if targetPositionReached:
print("reaching objetivo", objetivo, "odo:", self.readOdometry())
if self.closeEnough(objetivo, 0):
self.setSpeed(0, 0)
if mustCatch:
self.moveClaws()
break
else:
#Decelerate
vFin=vFin/1.005
self.setSpeed(vFin,0)
elif kp is None:
# target not detected, spin in place to find it
self.setSpeed(0,self.wTarget * 0.6)
else: # we see the target and the target position hasnt been reached
d = horizontalDistance(kp, [targetX,0])
A = kp.size
w = getMappedW(self.wTarget, d, targetX - resolution[0], targetX)
v = getMappedV(self.vTarget/2.0, A, targetSize)
self.setSpeed(v,w)
if DEBUG_MODE:
print("A:",A, "d:",d)
if targetSize-eps < A and not targetPositionReached:
# close enough to target, we set the objective from current position+some distance
targetPositionReached = True
objetivo=self.advanceDistance(self.ballDistance)
objetivo=[objetivo[0], objetivo[1], None]
self.setSpeed(vFin/2,0)
if DEBUG_MODE:
print("target pos reached, advancing to ", objetivo)
tEnd = time.perf_counter()
#time.sleep(period-(tEnd-tIni))
####################################################################################################
# CAMERA DEBUG FUNCTIONS
def takePicture(self):
"""
Take a picture and save it in photos directory (name based on current time)
"""
now = datetime.datetime.now()
self.cam.capture("photos/{:d}-{:d}-{:d}-{:02d}_{:02d}_{:02d}".format(now.year, now.month, now.day, now.hour, now.minute, now.second)+".png", format="png", use_video_port=True)
def detect_continuous(self):
"""
Debug function to test camera and cv2 detector
"""
period = 0.25 # 1 sec
detector = init_detector()
time.sleep(1)
self.cam.framerate=(1)
for img in self.cam.capture_continuous(self.rawCapture, format="bgr", use_video_port=True):
tIni = time.perf_counter()
frame = img.array
cv2.imshow('frame', frame)
noseque = search_blobs_detector(self.cam, frame, detector, verbose = True)
self.rawCapture.truncate(0)
tEnd = time.perf_counter()
cv2.waitKey(int(1000*period - (tEnd-tIni)))
cv2.destroyAllWindows()
####################################################################################################
# Floor light detector functions
def waitForWhite(self, coordinate, value):
"""
Updates the coordinate when it finds a white line (0->x, 1->y)
Both parameters are lists (must be of the same length),
and the process will be queued for each value
"""
white=[True]*len(coordinate)
print("coord ", coordinate, value)
self.lineDetectorProcess = Process(target = self.lineDetector, args=(white, coordinate, value))
self.lineDetectorProcess.start()
def updateCoordValue(self,coordinate, value):
"""
update the coordinate (0->x, 1->y) with the given value, taking into account
the current theta from the odometry
"""
if coordinate == 0: # x
self.lock_odometry.acquire()
self.x.value = value + self.len_color_eje * np.cos(self.readOdometry()[2])
self.lock_odometry.release()
else: # y
self.lock_odometry.acquire()
self.y.value = value + self.len_color_eje * np.sin(self.readOdometry()[2])
self.lock_odometry.release()
def lineDetector(self, whites,coordinates, values):
"""
For each white, coordinate, and value in the three parameters (lists),
updates the given coordinate with the given value when a line of the
given color (white->white, not white->black) is detected.
It has to detect the same color twice in a row for consistency.
"""
period = 0.1
for i in range(len(whites)):
white = whites[i]
coordinate = coordinates[i]
value=values[i]
end = False
nDetected = 0
while not self.finished.value and not end:
tIni = time.perf_counter()
if white: # looking for a white stripe
if self.colorSensorWhite():
nDetected+=1 # count the detection
else:
nDetected=0 # reset
if nDetected>1: # we detected two in a row
print("WHITE DETECTED")
self.updateCoordValue(coordinate, value) # update
end = True
else: # looking for a black stripe
if self.colorSensorBlack():
nDetected+=1 # count the detection
else:
nDetected=0 # reset
if nDetected>1: # we detected two in a row
print("BLACK DETECTED")
self.updateCoordValue(coordinate, value) # update
end = True
tEnd = time.perf_counter()
time.sleep(period - (tEnd-tIni))
time.sleep(1) # sleep one second to prevent the second line being detected too soon
####################################################################################################
# CLAWS FUNCTIONS
def catch(self):
"""
Starts the process that closes or opens the claws
"""
self.catcher = Process(target=self.moveClaws, args=()) #additional_params?))
self.catcher.start()
def moveClaws(self):
"""
Rutina paralela para cerrar las garras
"""
self.lock_garras.acquire()
DPS = 40 # 40º por segundo
end = False
period = 0.1
self.finished.value = False
while not self.finished.value and not end:
tIni = time.perf_counter()
if self.closing.value:
end = self.BP.get_motor_encoder(self.motorGarras) >= 0
else:
end = self.BP.get_motor_encoder(self.motorGarras) <= -self.maxRotGarras
if not end:
self.BP.set_motor_dps(self.motorGarras, DPS if self.closing.value else -DPS)
tEnd = time.perf_counter()
time.sleep(period - (tEnd-tIni))
self.BP.set_motor_dps(self.motorGarras, 0)
self.closing.value= not self.closing.value
self.lock_garras.release()
def advanceDistance(self, dist):
"""
Devuelve la posicion global (con respecto al origen de la odometria)
resultante de avanzar dist desde la posicion actual.
"""
xLoc=np.array([dist, 0, 0])
xRW=np.array(self.readOdometry())
xWorld=loc(np.dot(hom(xRW), hom(xLoc)))
return xWorld
####################################################################################################
# MAP & MOVING FUNCTIONS
def recalculateGoal(self, odo, dX, dY, x_goal, y_goal, eps):
if x_goal != None:
dX = x_goal - odo[0]
if y_goal != None:
dY = y_goal - odo[1]
if abs(dX) <= eps:
x_goal = None
if abs(dY) <= eps:
y_goal = None
th_goal = norm_pi(math.atan2(dY, dX))
return x_goal, y_goal, th_goal
def fixOdometryFromObstacle(self, neighbour, x_objective, y_objective):
"""
Unused function, for updating odometry based on obstacles
"""
print("actualizando odo:", self.readOdometry())
plusone=False
if self.dist / 100 >= 0.95 * self.mapa.sizeCell/1000:
plusone=True
self.lock_odometry.acquire()
if neighbour == 0:
if plusone:
y_objective+=self.mapa.sizeCell/1000
self.y.value = y_objective - (self.mapa.sizeCell /1000 / 2 + self.dist / 100)
elif neighbour == 4:
if plusone:
y_objective-=self.mapa.sizeCell/1000
self.y.value = y_objective + (self.mapa.sizeCell /1000/ 2 + self.dist / 100)
elif neighbour == 2:
if plusone:
x_objective+=self.mapa.sizeCell/1000
self.x.value = x_objective - (self.mapa.sizeCell /1000/ 2 + self.dist / 100)
elif neighbour == 6:
if plusone:
x_objective-=self.mapa.sizeCell/1000
self.x.value = x_objective + (self.mapa.sizeCell /1000 / 2 + self.dist / 100)
self.lock_odometry.release()
print("nuevos valores odo:", self.readOdometry())
def rel_angle(self, dX, dY, th):
"""
Returns the relative angle between th and the (dX, dY) vector
"""
th_abs = math.atan2(dY, dX) # -pi a pi
#neighbour = self.mapa.neighbou
return norm_pi(th_abs - th)
def go(self, x_goal_ini, y_goal_ini, eps = 0.05, checkObstacles=True, checkObstaclesMoving=False):
"""
Moves the robot to x_goal, y_goal (first it turns, then it advances, for cell navigation)
returns True if it finds an obstacle
if checkObstaclesMoving, it detects the obstacles while advancing (disabled: does not work very well)
"""
x_goal = x_goal_ini
y_goal = y_goal_ini
odo_ini = self.readOdometry()
odo = odo_ini
period = 0.02
#if sine is negative (if dY is negative) then the rotation must be negative
w = self.wTarget
dX = x_goal - odo[0]
dY = y_goal - odo[1]
if not self.useGyro: # odometry based turn
th_goal = norm_pi(math.atan2(dY, dX))
if (norm_pi(th_goal - odo[2]) < 0):
w = -w
else: # gyro based turn
th_goal = self.rel_angle(dX, dY, odo[2])
if (-math.pi/16 < th_goal < math.pi/16):
th_goal = 0
if (norm_pi(th_goal) < 0):
w = -w
end = False
self.setTurnedGyro()
while not end: # turn
tIni = time.perf_counter()
odo = self.readOdometry()
end = self.closeEnough([None, None, th_goal], w)
if not end:
self.setSpeed(0,w)
tEnd = time.perf_counter()
time.sleep(max(period - (tEnd - tIni),0))
self.setSpeed(0,0)
# obstaculos:
if checkObstacles and self.detectObstacle(): # obstacle in front of the robot
self.mapa.obstacleDetected(odo[0], odo[1], x_goal, y_goal)
if not self.mapa.replanPath(odo[0], odo[1]):
print("Unable to find a path")
self.stopOdometry()
exit(0)
return True
end = False
v = self.vTarget
self.setSpeed(v,0)
initial = np.array(self.readOdometry()[:-1])
vmin = self.vTarget/4
vmax = self.vTarget/1.5
x_goal, y_goal, th_goal = self.recalculateGoal(odo, dX, dY, x_goal, y_goal, eps)
while not end: # until we reach the goal
tIni = time.perf_counter()
odo = self.readOdometry()
end = self.closeEnough([x_goal, y_goal, None], w)
if not end:
# only if checkObstaclesMoving:
if checkObstaclesMoving and self.detectObstacle(cell_proportion=0.8): # obstacle in front of the robot
neighbour = self.mapa.obstacleDetected(odo[0], odo[1], x_goal_ini, y_goal_ini)
self.fixOdometryFromObstacle(neighbour, x_goal_ini, y_goal_ini)
if not self.mapa.replanPath(odo[0], odo[1]):
print("Unable to find a path")
self.stopOdometry()
exit(0)
return True
# slow down based on distance to goal:
odo = np.array(self.readOdometry()[:-1])
v = vInTrajectory(odo, initial,
np.array([x_goal_ini, y_goal_ini]), vmin, vmax) # variable speed
self.setSpeed(v,0)
tEnd = time.perf_counter()
time.sleep(max(period - (tEnd - tIni),0))
# in the end, stop:
self.setSpeed(0, 0)
return False
# ---------------------------------------------- p4:
def setMapNoPath(self, mapa):
"""
sets the map and the initial positions for the odometry (ini, end in cells)
Finds the shortest path from ini to end
"""
self.mapa = mapa
def setMap(self, mapa, ini=None, end=None):
"""
sets the map and the initial positions for the odometry (ini, end in cells)
Finds the shortest path from ini to end
"""
self.mapa = mapa
if ini is not None:
x, y = self.posFromCell(ini[0], ini[1])
self.setOdometry([x, y, ini[2]])
if end is not None:
if not self.mapa.findPath(ini[0], ini[1],end[0],end[1]):
print("ERROR en findPath")
self.stopOdometry()
def setPath(self, ini, end):
"""
Pre: a map has to have been set
Set a path from ini to end (both in m, [x,y])
"""
if not self.mapa.findPath(ini[0], ini[1],end[0],end[1]):
print("ERROR en findPath")
self.stopOdometry()
def setPathFromCurrentPosition(self, end):
"""
Pre: a map has to have been set
Set a path to end (in m) from the current odometry position
"""
odo = self.readOdometry()
if not self.mapa.findPathFromPos(odo[0], odo[1],end[0],end[1]):
print("ERROR en findPath")
self.stopOdometry()
def executePath(self, debug=False, checkObstacles=True):
"""
Executes the path in the current map, moving from cell to cell
"""
end = False
while not end:
replan = False
print(self.mapa.currentPath)
for step in self.mapa.currentPath:
# Go to next cell
x, y = self.posFromCell(step[0], step[1])
replan = self.go(x, y, checkObstacles=checkObstacles)
if replan:
if debug:
self.mapa.drawMap(saveSnapshot=False)
break
end = not replan # end if there wasnt a replan
def detectHomography(self, DEBUG=0, verbose=False):
"""
takes a picture and returns an int based on the detection:
0 -> nothing
1 -> r2
2 -> el otro
"""
with picamera.array.PiRGBArray(self.cam) as stream:
self.cam.capture(stream, format='bgr')
# At this point the image is available as stream.array
image = stream.array
if match_images(self.templateR2D2, image, DEBUG=DEBUG, verbose=verbose):
return 1
elif match_images(self.templateBB8, image, DEBUG=DEBUG, verbose=verbose):
return 2
else:
return 0
def detectR2D2(self, DEBUG=0, verbose=False):
"""
takes a picture and checks if R2D2 is there
"""
with picamera.array.PiRGBArray(self.cam) as stream:
self.cam.capture(stream, format='bgr')
image = stream.array
return match_images(self.templateR2D2, image, DEBUG=DEBUG, verbose=verbose)
def detectBB8(self, DEBUG=0, verbose=False):
"""
takes a picture and checks if BB8 is there
"""
with picamera.array.PiRGBArray(self.cam) as stream:
self.cam.capture(stream, format='bgr')
image = stream.array
return match_images(self.templateBB8_s, image, DEBUG=DEBUG, verbose=verbose)
def posFromCell(self, x,y):
"""
Returns the real position (in m) from the given cell coordinates
(center of the cell)
"""
return (x+0.5)*self.mapa.sizeCell/1000.0, (y+0.5)*self.mapa.sizeCell/1000.0
def detectObstacle(self, cell_proportion=1.0):
"""
Returns true if the ultrasonic sensor returns a distance less than the size of a cell
False otherwise (or if there is a sensor error)
"""
try:
self.dist=self.BP.get_sensor(self.portSensorUltrasonic)
return self.dist<=self.mapa.sizeCell/10.0*self.min_cells*cell_proportion
except brickpi3.SensorError as error:
print(error)
return False
def testDistance(self, period=0.5):
"""
Test ultrasonic sensor. Prints the measured distance
"""
while True:
dist = self.BP.get_sensor(self.portSensorUltrasonic)
print("dist: ", dist)
time.sleep(period)
def colorSensorValue(self):
"""
Returns the light sensor value
"""
return self.BP.get_sensor(self.portSensorLight)
def colorSensorBlack(self):
"""
Returns true if black is detected according to the threshold
"""
return self.colorSensorValue()>=black
def colorSensorWhite(self):
"""
Returns true if white is detected according to the threshold
"""
return self.colorSensorValue()<=white
def angleGyro(self):
"""
absolute angle turned In degrees
They use the opposite angles...
"""
return -self.BP.get_sensor(self.portGyro)
def relocateWithSonar(self, angle, relocationPosition, distance1 = 35, distance2 = 25, eps = 0.2):
"""
Updates the odometry using a wall.
- angle is the angle in which it will look for the wall and put itself perpendicular to.
- relocationPosition [x,y,th] is the position it will be updated to (any can be None)
- distance1 (cm) is the distance from the wall the robot will get to before fixing the odometry
- distance2 (cm) is the final distance to the wall after the odometry fix
- eps (cm) is used for the minimum distance detection
After the odometry fix, it also sets the Y coordinate based on the detected angle error
"""
w = self.wTarget
sleepTime = 0.4
minVal = math.inf
diff = []
prevDist = math.inf
period = 0.05
if (norm_pi(angle - self.readOdometry()[2]) < 0):
w = -w
end = False
odo_ini = self.readOdometry()
# face <angle> before moving forward
self.setSpeed(0,w)
while not end:
tIni = time.perf_counter()
end = self.closeEnough([None, None, angle], w)
if not end:
tFin = time.perf_counter()
time.sleep(period-(tFin-tIni))
self.setSpeed(0,0)
w = self.wTarget*0.4
# oriented to <angle>, move forward until distance1:
while not self.detectObstacle() or self.dist > distance1:
tIni = time.perf_counter()
self.setSpeed(self.vTarget / 2, 0)
tFin = time.perf_counter()
time.sleep(period-(tFin-tIni))
print(self.dist)
## End of lineal movement
self.setSpeed(0,0)
time.sleep(1)
# detect which way it has to turn (detect the gradient):
while prevDist == self.dist or prevDist == math.inf:
print("self.dist", self.dist)
self.setSpeed(0,w)
time.sleep(0.5)
detected = self.detectObstacle()
if prevDist != math.inf:
if self.dist > prevDist:
print("end", self.dist, prevDist)
w = -w # turn the other way
time.sleep(0.5)
if prevDist != self.dist:
break # keep turning the same way
prevDist = self.dist
self.setSpeed(0,0)
# save current th and traveled distance to fix y later:
odo = self.readOdometry()
r = distance(np.array(odo_ini[:1]), np.array(odo[:1]))
th_before = self.th_abs.value
time.sleep(1)
prevDist = math.inf
w /= 2
self.setSpeed(0,w)
# now we turn expecting to see the distance decrease. When it gets greater,
# we know we have reached the minimum, which is the angle perpendicular to the wall
while True:
detected = self.detectObstacle()
if prevDist< minVal:
minVal = prevDist
thMin = self.th_abs.value # save for Y
if prevDist != self.dist:
if (not detected) or self.dist > distance1:
diff = []
prevDist = math.inf
elif self.dist != prevDist:
if w < 0:
end = self.dist >= minVal + eps
else:
end = self.dist >= minVal + eps
if end and detected:
break
prevDist = self.dist
time.sleep(0.5)
detected = False
end = False
# correct y according to the measured theta error:
th_abs_now = self.th_abs.value
dTh = th_abs_now - th_before
dY = np.sin(dTh) * r
# correct th:
odo = self.readOdometry()
dTh = th_abs_now-thMin
self.setOdometry([odo[0], odo[1] + dY, odo[2]+dTh])
# we are perpendicular, get to distance2 of the wall:
while not self.detectObstacle() or self.dist > distance2:
tIni = time.perf_counter()
self.setSpeed(self.vTarget / 2, 0)
tFin = time.perf_counter()
time.sleep(period-(tFin-tIni))
odo = self.readOdometry()
# update coordinate based on <relocationPosition>:
for i, p in enumerate(relocationPosition):
if p == None:
relocationPosition[i] = odo[i]
self.setOdometry(relocationPosition)