-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathMinIONQC.R
executable file
·952 lines (787 loc) · 42.9 KB
/
MinIONQC.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
#!/usr/bin/env Rscript
# MinIONQC version 1.4.1
# Copyright (C) 2017 onwards Robert Lanfear
#
# For license see https://github.com/roblanf/minion_qc/blob/master/LICENSE
# supress warnings
options(warn=-1)
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(viridis))
suppressPackageStartupMessages(library(plyr))
suppressPackageStartupMessages(library(reshape2))
suppressPackageStartupMessages(library(readr))
suppressPackageStartupMessages(library(yaml))
suppressPackageStartupMessages(library(scales))
suppressPackageStartupMessages(library(parallel))
suppressPackageStartupMessages(library(futile.logger))
suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(optparse))
# option parsing #
parser <- OptionParser()
parser <- add_option(parser,
opt_str = c("-i", "--input"),
type = "character",
dest = 'input.file',
help="Input file or directory (required). Either a full path to a sequence_summary.txt file, or a full path to a directory containing one or more such files. In the latter case the directory is searched recursively."
)
parser <- add_option(parser,
opt_str = c("-o", "--outputdirectory"),
type = "character",
dest = 'output.dir',
default=NA,
help="Output directory (optional, default is the same as the input directory). If a single sequencing_summary.txt file is passed as input, then the output directory will contain just the plots associated with that file. If a directory containing more than one sequencing_summary.txt files is passed as input, then the plots will be put into sub-directories that have the same names as the parent directories of each sequencing_summary.txt file"
)
parser <- add_option(parser,
opt_str = c("-q", "--qscore_cutoff"),
type="double",
default=7.0,
dest = 'q',
help="The cutoff value for the mean Q score of a read (default 7). Used to create separate plots for reads above and below this threshold"
)
parser <- add_option(parser,
opt_str = c("-p", "--processors"),
type="integer",
default=1,
dest = 'cores',
help="Number of processors to use for the anlaysis (default 1). Only helps when you are analysing more than one sequencing_summary.txt file at a time"
)
parser <- add_option(parser,
opt_str = c("-s", "--smallfigures"),
type = "logical",
default = FALSE,
dest = 'smallfig',
help="TRUE or FALSE (the default). When true, MinIONQC will output smaller figures, e.g. suitable for publications or presentations. The default is to produce larger figures optimised for display on screen. Some figures just require small text, and cannot be effectively resized."
)
parser <- add_option(parser,
opt_str = c("-c", "--combined-only"),
type = "logical",
default = FALSE,
dest = 'combined_only',
help="TRUE or FALSE (the default). When true, MinIONQC will only produce the combined report, it will not produce individual reports for each flowcell."
)
parser <- add_option(parser,
opt_str = c("-f", "--format"),
type = "character",
default = 'png',
dest = 'plot_format',
help="A string in quotes, to set the output format of the plots. 'png' (the default) or any of 'pdf', 'ps', 'jpeg', 'tiff', 'bmp' are supported. 'png' is recommended and is thoroughly tested. The 'pdf' option may be useful if you have a system without X11 installed, because PNG files require X11 but PDF files do not. Other options are there for convenience."
)
parser <- add_option(parser,
opt_str = c("-m", "--muxes"),
type = "numeric",
default = '0',
dest = 'muxscan',
help="The value for mux scan used in MinKnow."
)
parser <- add_option(parser,
opt_str = c("-a", "--add-stat"),
type = "logical",
default = 'FALSE',
dest = 'plot_stat',
help="TRUE or FALSE (the default). When true, MinIONQC will add some basic statistical values on plots."
)
opt = parse_args(parser)
if(exists("test.file") == FALSE){
test.file = c(1, 2, 3) # dummy variable
}
if (length(opt$input.file)==1) {
input.file = opt$input.file
} else if (length(test.file)==1) {
input.file = test.file # specifically for testing the script
flog.info(paste("Using test file", test.file))
} else {
stop("Input file parameter must be supplied via -i or --input. See script usage (--help) or readme for help: https://github.com/roblanf/minion_qc")
}
q = opt$q
cores = opt$cores
smallfig = opt$smallfig
combined_only = opt$combined_only
plot_stat = opt$plot_stat
mux_int = opt$muxscan
if (opt$plot_format %in% c('png', 'pdf', 'ps', 'jpeg', 'tiff', 'bmp')){
plot_format = opt$plot_format
}else {
flog.error("The plot format passed via the -f option must be one of 'png', 'pdf', 'ps', 'jpeg', 'tiff', or 'bmp'. Please check and try again")
stop()
}
p1m = 1.0
# this is how we label the reads at least as good as q
q_title = paste("Q>=", q, sep="")
# build the map for R9.5
p1 = data.frame(channel=33:64, row=rep(1:4, each=8), col=rep(1:8, 4))
p2 = data.frame(channel=481:512, row=rep(5:8, each=8), col=rep(1:8, 4))
p3 = data.frame(channel=417:448, row=rep(9:12, each=8), col=rep(1:8, 4))
p4 = data.frame(channel=353:384, row=rep(13:16, each=8), col=rep(1:8, 4))
p5 = data.frame(channel=289:320, row=rep(17:20, each=8), col=rep(1:8, 4))
p6 = data.frame(channel=225:256, row=rep(21:24, each=8), col=rep(1:8, 4))
p7 = data.frame(channel=161:192, row=rep(25:28, each=8), col=rep(1:8, 4))
p8 = data.frame(channel=97:128, row=rep(29:32, each=8), col=rep(1:8, 4))
q1 = data.frame(channel=1:32, row=rep(1:4, each=8), col=rep(16:9, 4))
q2 = data.frame(channel=449:480, row=rep(5:8, each=8), col=rep(16:9, 4))
q3 = data.frame(channel=385:416, row=rep(9:12, each=8), col=rep(16:9, 4))
q4 = data.frame(channel=321:352, row=rep(13:16, each=8), col=rep(16:9, 4))
q5 = data.frame(channel=257:288, row=rep(17:20, each=8), col=rep(16:9, 4))
q6 = data.frame(channel=193:224, row=rep(21:24, each=8), col=rep(16:9, 4))
q7 = data.frame(channel=129:160, row=rep(25:28, each=8), col=rep(16:9, 4))
q8 = data.frame(channel=65:96, row=rep(29:32, each=8), col=rep(16:9, 4))
map = rbind(p1, p2, p3, p4, p5, p6, p7, p8, q1, q2, q3, q4, q5, q6, q7, q8)
add_cols <- function(d, min.q){
# take a sequencing sumamry file (d), and a minimum Q value you are interested in (min.q)
# return the same data frame with the following columns added
# cumulative.bases and cumulative.bases.time
# hour of run
# reads.per.hour
d = subset(d, mean_qscore_template >= min.q)
if(nrow(d)==0){
flog.error(paste("There are no reads with a mean Q score higher than your cutoff of ", min.q, ". Please choose a lower cutoff and try again.", sep = ""))
quit()
}
if(max(d$channel)<=512){
d = merge(d, map, by="channel")
}else{
# thanks to Matt Loose. Code adapted from: https://github.com/mattloose/flowcellvis/blob/master/flowcellgif.py
block = floor((d$channel-1)/250)
remainder = (d$channel-1)%%250
d$row = floor(remainder/10) + 1 # +1 because R is not zero indexed
d$col = remainder%%10 + block*10 + 1 # +1 because R is not zero indexed
}
d = d[with(d, order(as.numeric(start_time))), ] # sort by start time
d$cumulative.bases.time = cumsum(as.numeric(d$sequence_length_template))
d = d[with(d, order(-sequence_length_template)), ] # sort by read length
d$cumulative.bases = cumsum(as.numeric(d$sequence_length_template))
d$hour = d$start_time %/% 3600
# add the reads generated for each hour
reads.per.hour = as.data.frame(table(d$hour))
names(reads.per.hour) = c("hour", "reads_per_hour")
reads.per.hour$hour = as.numeric(as.character(reads.per.hour$hour))
d = merge(d, reads.per.hour, by = c("hour"))
return(d)
}
load_summary <- function(filepath, min.q){
# load a sequencing summary and add some info
# min.q is a vector of length 2 defining 2 levels of min.q to have
# by default the lowest value is -Inf, i.e. includes all reads. The
# other value in min.q is set by the user at the command line
suppressWarnings({
d = read_tsv(filepath, col_types = cols_only(channel = 'i',
num_events_template = 'i',
sequence_length_template = 'i',
mean_qscore_template = 'n',
sequence_length_2d = 'i',
mean_qscore_2d = 'n',
start_time = 'n',
calibration_strand_genome_template = 'c'))
})
problem_rows = problems(d)$row
if(length(problem_rows>0)){
flog.warn("There were problems in parsing your input file with the following rows: ")
flog.warn(problem_rows)
flog.warn("These rows will be ignored for further analysis, please check your input file")
d = d[-c(problem_rows),]
}
if(max(d$channel)<=512){
flog.info("MinION flowcell detected")
}else{
flog.info("PromethION flowcell detected")
}
# remove the control sequence from directRNA runs
if("calibration_strand_genome_template" %in% names(d)){
d = subset(d, calibration_strand_genome_template != "YHR174W")
}
if("sequence_length_2d" %in% names(d)){
# it's a 1D2 or 2D run
d$sequence_length_template = as.numeric(as.character(d$sequence_length_2d))
d$mean_qscore_template = as.numeric(as.character(d$mean_qscore_2d))
d$num_events_template = NA
d$start_time = as.numeric(as.character(d$start_time))
}else{
d$sequence_length_template = as.numeric(as.character(d$sequence_length_template))
d$mean_qscore_template = as.numeric(as.character(d$mean_qscore_template))
d$num_events_template = as.numeric(as.character(d$num_events_template))
d$start_time = as.numeric(as.character(d$start_time))
}
d$events_per_base = d$num_events_template/d$sequence_length_template
flowcell = basename(dirname(filepath))
# add columns for all the reads
d1 = add_cols(d, min.q[1])
d1$Q_cutoff = "All reads"
# add columns for just the reads that pass the user Q threshold
d2 = add_cols(d, min.q[2])
d2$Q_cutoff = q_title
# bind those two together into one data frame
d = as.data.frame(rbindlist(list(d1, d2)))
# name the flowcell (useful for analyses with >1 flowcell)
d$flowcell = flowcell
# make sure this is a factor
d$Q_cutoff = as.factor(d$Q_cutoff)
keep = c("hour", "start_time", "channel", "sequence_length_template", "mean_qscore_template", "row", "col", "cumulative.bases", "cumulative.bases.time", "reads_per_hour", "Q_cutoff", "flowcell", "events_per_base")
dk = d[, which(names(d) %in% keep)]
return(dk)
}
reads.gt <- function(d, len){
# return the number of reads in data frame d
# that are at least as long as length len
return(length(which(d$sequence_length_template>=len)))
}
bases.gt <- function(d, len){
# return the number of bases contained in reads from
# data frame d
# that are at least as long as length len
reads = subset(d, sequence_length_template >= len)
return(sum(as.numeric(reads$sequence_length_template)))
}
log10_minor_break = function (...){
# function to add minor breaks to a log10 graph
# hat-tip: https://stackoverflow.com/questions/30179442/plotting-minor-breaks-on-a-log-scale-with-ggplot
function(x) {
minx = floor(min(log10(x), na.rm=T))-1;
maxx = ceiling(max(log10(x), na.rm=T))+1;
n_major = maxx-minx+1;
major_breaks = seq(minx, maxx, by=1)
minor_breaks =
rep(log10(seq(1, 9, by=1)), times = n_major)+
rep(major_breaks, each = 9)
return(10^(minor_breaks))
}
}
log10_major_break = function (...){
# function to add major breaks to a log10 graph
# hat-tip: https://stackoverflow.com/questions/30179442/plotting-minor-breaks-on-a-log-scale-with-ggplot
function(x) {
minx = floor(min(log10(x), na.rm=T))-1;
maxx = ceiling(max(log10(x), na.rm=T))+1;
n_major = maxx-minx+1;
major_breaks = seq(minx, maxx, by=1)
return(10^(major_breaks))
}
}
binSearch <- function(min, max, df, t = 100000) {
# binary search algorithm, thanks to https://stackoverflow.com/questions/46292438/optimising-a-calculation-on-every-cumulative-subset-of-a-vector-in-r/46303384#46303384
# the aim is to return the number of reads in a dataset (df)
# that comprise the largest subset of reads with an N50 of t
# we use this to calculte the number of 'ultra long' reads
# which are defined as those with N50 > 100KB
mid = floor(mean(c(min, max)))
if (mid == min) {
if (df$sequence_length_template[min(which(df$cumulative.bases>df$cumulative.bases[min]/2))] < t) {
return(min - 1)
} else {
return(max - 1)
}
}
n = df$sequence_length_template[min(which(df$cumulative.bases>df$cumulative.bases[mid]/2))]
if (n >= t) {
return(binSearch(mid, max, df))
} else {
return(binSearch(min, mid, df))
}
}
summary.stats <- function(d, Q_cutoff="All reads"){
# Calculate summary stats for a single value of min.q
rows = which(as.character(d$Q_cutoff)==Q_cutoff)
d = d[rows,]
d = d[with(d, order(-sequence_length_template)), ] # sort by read length, just in case
total.bases = sum(as.numeric(d$sequence_length_template))
total.reads = nrow(d)
N50.length = d$sequence_length_template[min(which(d$cumulative.bases > (total.bases/2)))]
mean.length = round(mean(as.numeric(d$sequence_length_template)), digits = 1)
median.length = round(median(as.numeric(d$sequence_length_template)), digits = 1)
max.length = max(as.numeric(d$sequence_length_template))
mean.q = round(mean(d$mean_qscore_template), digits = 1)
median.q = round(median(d$mean_qscore_template), digits = 1)
#calculate ultra-long reads and bases (max amount of data with N50>100KB)
ultra.reads = binSearch(1, nrow(d), d, t = 100000)
if(ultra.reads>=1){
ultra.gigabases = sum(as.numeric(d$sequence_length_template[1:ultra.reads]))/1000000000
}else{
ultra.gigabases = 0
}
reads = list(
reads.gt(d, 10000),
reads.gt(d, 20000),
reads.gt(d, 50000),
reads.gt(d, 100000),
reads.gt(d, 200000),
reads.gt(d, 500000),
reads.gt(d, 1000000),
ultra.reads)
names(reads) = c(">10kb", ">20kb", ">50kb", ">100kb", ">200kb", ">500kb", ">1m", "ultralong")
bases = list(
bases.gt(d, 10000)/1000000000,
bases.gt(d, 20000)/1000000000,
bases.gt(d, 50000)/1000000000,
bases.gt(d, 100000)/1000000000,
bases.gt(d, 200000)/1000000000,
bases.gt(d, 500000)/1000000000,
bases.gt(d, 1000000)/1000000000,
ultra.gigabases)
names(bases) = c(">10kb", ">20kb", ">50kb", ">100kb", ">200kb", ">500kb", ">1m", "ultralong")
return(list('total.gigabases' = total.bases/1000000000,
'total.reads' = total.reads,
'N50.length' = N50.length,
'mean.length' = mean.length,
'median.length' = median.length,
'max.length' = max.length,
'mean.q' = mean.q,
'median.q' = median.q,
'reads' = reads,
'gigabases' = bases
))
}
channel.summary <- function(d){
# calculate summaries of what happened in each of the channels
# of a flowcell
a = ddply(d, .(channel),
summarize,
total.bases = sum(sequence_length_template),
total.reads = sum(which(sequence_length_template>=0)),
mean.read.length = mean(sequence_length_template),
median.read.length = median(sequence_length_template),
row = mean(row),
col = mean(col))
b = melt(a, id.vars = c("channel", "row", "col"))
return(b)
}
single.flowcell <- function(input.file, output.dir, q=7, base.dir = NA){
# wrapper function to analyse data from a single flowcell
# input.file is a sequencing_summary.txt file from a 1D run
# output.dir is the output directory into which to write results
# q is the cutoff used for Q values, set by the user
# base.dir is the base directory if and only if the user supplied a base directory
# we use base.dir to name flowcells in a sensible way
flog.info(paste("Loading input file:", input.file))
d = load_summary(input.file, min.q=c(-Inf, q))
flowcell = unique(d$flowcell)
# output goes with the sequencing summary file unless otherwise specified
if(is.na(opt$output.dir)){
output.dir = file.path(dirname(input.file))
} else {
# the user supplied an output dir
output.dir = file.path(opt$output.dir, flowcell)
}
flog.info(paste(sep = "", flowcell, ": creating output directory:", output.dir))
dir.create(output.dir, recursive = TRUE)
out.txt = file.path(output.dir, "summary.yaml")
flog.info(paste(sep = "", flowcell, ": summarising input file for flowcell"))
all.reads.summary = summary.stats(d, Q_cutoff = "All reads")
q10.reads.summary = summary.stats(d, Q_cutoff = q_title)
summary = list("input file" = input.file,
"All reads" = all.reads.summary,
cutoff = q10.reads.summary,
"notes" = 'ultralong reads refers to the largest set of reads with N50>100KB')
names(summary)[3] = q_title
write(as.yaml(summary), out.txt)
if (mux_int == 0) {
mux_int = max(d$hour)
}
muxes = seq(from = 0, to = max(d$hour), by = mux_int)
# set up variable sizes
if(smallfig == TRUE){ p1m = 0.5 }else{ p1m = 1.0 }
if(smallfig == TRUE){ p2m = 0.6 }else{ p2m = 1.0 }
# make plots
flog.info(paste(sep = "", flowcell, ": plotting length histogram"))
p1 = ggplot(d, aes(x = sequence_length_template, fill = Q_cutoff)) +
geom_histogram(bins = 300) +
scale_x_log10(minor_breaks=log10_minor_break(), breaks = log10_major_break()) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
theme(text = element_text(size = 15)) +
xlab("Read length (bases)") +
ylab("Number of reads") +
guides(fill=FALSE) + scale_fill_viridis(discrete = TRUE, begin = 0.25, end = 0.75)
# Add N50 and mean length on p1
if (plot_stat) {
# Extract values to display
annotation_df = data.frame(
Q_cutoff = c("All reads", q_title),
n50 = c(all.reads.summary$N50.length, q10.reads.summary$N50.length),
mean = c(all.reads.summary$mean.length, q10.reads.summary$mean.length),
n50_math = c(
if(all.reads.summary$N50.length > all.reads.summary$mean.length){"+"} else {"-"},
if(all.reads.summary$N50.length > q10.reads.summary$mean.length){"+"} else {"-"}
),
mean_math = c(
if(all.reads.summary$N50.length > all.reads.summary$mean.length){"-"} else {"+"},
if(all.reads.summary$N50.length > q10.reads.summary$mean.length){"-"} else {"+"}
)
)
# Set up labels and their location on p1
annotation_text_df = data.frame(
Q_cutoff = c("All reads", q_title),
n50_label = c(paste("N50", annotation_df[1,2], sep="\n"), paste("N50", annotation_df[2,2], sep="\n")),
n50_x = c(eval(parse(text=paste(annotation_df[1,"n50"], annotation_df[1,"n50_math"] , annotation_df[1,"n50"], "*", 0.4))), eval(parse(text=paste(annotation_df[2,"n50"],annotation_df[2, "n50_math"] ,annotation_df[2,"n50"], "*", 0.4)))),
mean_label = c(paste("Mean", annotation_df[1,3], sep="\n"), paste("Mean", annotation_df[2,3], sep="\n")),
mean_x = c(eval(parse(text=paste(annotation_df[1,"mean"], annotation_df[1, "mean_math"] , annotation_df[1,"mean"], "*", 0.4))), eval(parse(text=paste(annotation_df[2,"mean"],annotation_df[2, "mean_math"] ,annotation_df[2,"mean"], "*", 0.4))))
)
# Add lines on p1
ylim=max(ggplot_build(p1)$data[[1]]$count)
p1 = p1 +
geom_vline(data=annotation_df, aes(xintercept = n50), color="black") +
geom_vline(data=annotation_df, aes(xintercept = mean), color="black") +
geom_text(data = annotation_text_df, mapping = aes(x=n50_x, y=ylim*0.85, label = n50_label)) +
geom_text(data = annotation_text_df, mapping = aes(x=mean_x, y=ylim*0.85, label = mean_label))
}
suppressMessages(ggsave(filename = file.path(output.dir, paste("length_histogram.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p1)) #
flog.info(paste(sep = "", flowcell, ": plotting mean Q score histogram"))
p2 = ggplot(d, aes(x = mean_qscore_template, fill = Q_cutoff)) +
geom_histogram(bins = 300) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
theme(text = element_text(size = 15)) +
xlab("Mean Q score of read") +
ylab("Number of reads") +
guides(fill=FALSE) + scale_fill_viridis(discrete = TRUE, begin = 0.25, end = 0.75)
# Add mean Qscore on p2
if (plot_stat) {
# Extract values to display
meanQ_df = data.frame(
Q_cutoff = c("All reads", q_title),
mean = c(all.reads.summary$mean.q, q10.reads.summary$mean.q),
mean_label_x = c(all.reads.summary$mean.q*0.95, q10.reads.summary$mean.q*0.95),
mean_label = c(paste("Mean\n", all.reads.summary$mean.q), paste("Mean\n", q10.reads.summary$mean.q))
)
# Add line on p2
ylim_meanQ=max(ggplot_build(p2)$data[[1]]$count)
p2 = p2 +
geom_vline(data=meanQ_df, aes(xintercept = mean), color="black") +
geom_text(data = meanQ_df, mapping = aes(x=mean_label_x, y=ylim_meanQ*0.95, label = mean_label))
}
suppressMessages(ggsave(filename = file.path(output.dir, paste("q_histogram.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p2)) #
if(max(d$channel)<=512){
# only do this for minion, not promethion
flog.info(paste(sep = "", flowcell, ": plotting flowcell overview"))
p3 = ggplot(subset(d, Q_cutoff=="All reads"), aes(x=start_time/3600, y=sequence_length_template, colour = mean_qscore_template)) +
geom_point(size=1.5, alpha=0.35) +
scale_colour_viridis() +
labs(colour='Q') +
scale_y_log10() +
facet_grid(row~col) +
theme(panel.spacing = unit(0.5, "lines")) +
xlab("Hours into run") +
ylab("Read length") +
theme(text = element_text(size = 40), axis.text.x = element_text(size=12), axis.text.y = element_text(size=12), legend.text=element_text(size=18), legend.title=element_text(size=24))
suppressMessages(ggsave(filename = file.path(output.dir, paste("flowcell_overview.", plot_format, sep="")), device=plot_format, width = 2000/75, height = 1920/75, plot = p3))
}
flog.info(paste(sep = "", flowcell, ": plotting flowcell yield over time"))
p5 = ggplot(d, aes(x=start_time/3600, y=cumulative.bases.time/1000000000, colour = Q_cutoff)) +
geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
geom_line(size = 1) +
xlab("Hours into run") +
ylab("Total yield in gigabases") +
scale_colour_viridis(discrete = TRUE, begin = 0.25, end = 0.75, guide = guide_legend(title = "Reads")) +
theme(text = element_text(size = 15))
suppressMessages(ggsave(filename = file.path(output.dir, paste("yield_over_time.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*480/75, plot = p5)) #
flog.info(paste(sep = "", flowcell, ": plotting flowcell yield by read length"))
p6 = ggplot(d, aes(x=sequence_length_template, y=cumulative.bases/1000000000, colour = Q_cutoff)) +
geom_line(size = 1) +
xlab("Minimum read length (bases)") +
ylab("Total yield in gigabases") +
scale_colour_viridis(discrete = TRUE, begin = 0.25, end = 0.75, guide = guide_legend(title = "Reads")) +
theme(text = element_text(size = 15))
xmax = max(d$sequence_length_template[which(d$cumulative.bases > 0.01 * max(d$cumulative.bases))])
p6 = p6 + scale_x_continuous(limits = c(0, xmax))
suppressMessages(ggsave(filename = file.path(output.dir, paste("yield_by_length.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*480/75, plot = p6)) #
flog.info(paste(sep = "", flowcell, ": plotting sequence length over time"))
p7 = ggplot(d, aes(x=start_time/3600, y=sequence_length_template, colour = Q_cutoff, group = Q_cutoff)) +
geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
theme(text = element_text(size = 15)) +
geom_smooth() +
xlab("Hours into run") +
ylab("Mean read length (bases)") +
scale_colour_viridis(discrete = TRUE, begin = 0.25, end = 0.75, guide = guide_legend(title = "Reads")) +
ylim(0, NA)
suppressMessages(ggsave(filename = file.path(output.dir, paste("length_by_hour.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*480/75, plot = p7)) #
flog.info(paste(sep = "", flowcell, ": plotting Q score over time"))
p8 = ggplot(d, aes(x=start_time/3600, y=mean_qscore_template, colour = Q_cutoff, group = Q_cutoff)) +
geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
theme(text = element_text(size = 15)) +
geom_smooth() +
xlab("Hours into run") +
ylab("Mean Q score") +
scale_colour_viridis(discrete = TRUE, begin = 0.25, end = 0.75, guide = guide_legend(title = "Reads")) +
ylim(0, NA)
suppressMessages(ggsave(filename = file.path(output.dir, paste("q_by_hour.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*480/75, plot = p8)) #
flog.info(paste(sep = "", flowcell, ": plotting reads per hour"))
f = d[c("hour", "reads_per_hour", "Q_cutoff")]
f = f[!duplicated(f),]
g = subset(f, Q_cutoff=="All reads")
h = subset(f, Q_cutoff==q_title)
max = max(f$hour)
# all of this is just to fill in hours with no reads recorded
all = 0:max
add.g = all[which(all %in% g$hour == FALSE)]
if(length(add.g)>0){
add.g = data.frame(hour = add.g, reads_per_hour = 0, Q_cutoff = "All reads")
g = rbind(g, add.g)
}
add.h = all[which(all %in% h$hour == FALSE)]
if(length(add.h)>0){
add.h = data.frame(hour = add.h, reads_per_hour = 0, Q_cutoff = q_title)
h = rbind(h, add.h)
}
i = rbind(g, h)
i$Q_cutoff = as.character(i$Q_cutoff)
i$Q_cutoff[which(i$Q_cutoff==q_title)] = paste("Q>=", q, sep="")
p9 = ggplot(i, aes(x=hour, y=reads_per_hour, colour = Q_cutoff, group = Q_cutoff)) +
geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
theme(text = element_text(size = 15)) +
geom_point() +
geom_line() +
xlab("Hours into run") +
ylab("Number of reads per hour") +
ylim(0, NA) +
scale_colour_viridis(discrete = TRUE, begin = 0.25, end = 0.75, guide = guide_legend(title = "Reads"))
suppressMessages(ggsave(filename = file.path(output.dir, paste("reads_per_hour.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*480/75, plot = p9)) #
if(max(d$channel)<=512){
# minion
flog.info(paste(sep = "", flowcell, ": plotting read length vs. q score scatterplot"))
p10 = ggplot(subset(d, Q_cutoff=="All reads"), aes(x = sequence_length_template, y = mean_qscore_template, colour = events_per_base)) +
geom_point(alpha=0.05, size = 0.4) +
scale_x_log10(minor_breaks=log10_minor_break(), breaks = log10_major_break()) +
labs(colour='Events per base\n(log scale)\n') +
theme(text = element_text(size = 15)) +
xlab("Read length (bases)") +
ylab("Mean Q score of read")
}else{
# promethion
p10 = ggplot(subset(d, Q_cutoff=="All reads"), aes(x = sequence_length_template, y = mean_qscore_template, colour = events_per_base)) +
geom_bin2d() +
scale_x_log10(minor_breaks=log10_minor_break(), breaks = log10_major_break()) +
theme(text = element_text(size = 15)) +
scale_fill_viridis() +
xlab("Read length (bases)") +
ylab("Mean Q score of read")
}
if(max(d$events_per_base, na.rm=T)>0){
# a catch for 1D2 runs which don't have events per base
p10 = p10 + scale_colour_viridis(trans = "log", labels = scientific, option = 'inferno')
}
# we keep it a bit wider, because the legend takes up a fair bit of the plot space
suppressMessages(ggsave(filename = file.path(output.dir, paste("length_vs_q.", plot_format, sep="")), device=plot_format, width = p2m*960/75, height = p1m*960/75, plot = p10)) #
flog.info(paste(sep = "", flowcell, ": plotting flowcell channels summary histograms"))
c = channel.summary(subset(d, Q_cutoff=="All reads"))
c10 = channel.summary(subset(d, Q_cutoff==q_title))
c$Q_cutoff = "All reads"
c10$Q_cutoff = q_title
cc = rbind(c, c10)
cc$variable = as.character(cc$variable)
cc$variable[which(cc$variable=="total.bases")] = "Number of bases per channel"
cc$variable[which(cc$variable=="total.reads")] = "Number of reads per channel"
cc$variable[which(cc$variable=="mean.read.length")] = "Mean read length per channel"
cc$variable[which(cc$variable=="median.read.length")] = "Median read length per channel"
p11 = ggplot(cc, aes(x = value, fill = Q_cutoff)) + geom_histogram(bins = 30) +
facet_grid(Q_cutoff~variable, scales = "free_x") +
theme(text = element_text(size = 15), axis.text.x = element_text(angle = 60, hjust = 1)) +
guides(fill=FALSE) +
scale_fill_viridis(discrete = TRUE, begin = 0.25, end = 0.75) +
guides(fill=FALSE)
suppressMessages(ggsave(filename = file.path(output.dir, paste("channel_summary.", plot_format, sep="")), device=plot_format, width = 960/75, height = 480/75, plot = p11))
flog.info(paste(sep = "", flowcell, ": plotting physical overview of output per channel"))
if(max(d$channel)<=512){
# minion
cols = 2
}else{
# promethion
cols = 1
}
p12 = ggplot(subset(cc, variable == "Number of bases per channel"), aes(x = as.numeric(col), y = as.numeric(row))) +
geom_tile(aes(fill = value/1000000000), colour="white", size=0.25) +
facet_wrap(~Q_cutoff, ncol = cols) +
theme(text = element_text(size = 15),
plot.background=element_blank(),
panel.border=element_blank(),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
scale_fill_viridis(name = "GB/channel") +
scale_y_continuous(trans = "reverse", expand=c(0,0)) +
scale_x_continuous(expand=c(0,0)) +
coord_fixed() +
labs(x="channel column",y="channel row")
if(max(d$channel)<=512){
# minion
suppressMessages(ggsave(filename = file.path(output.dir, paste("gb_per_channel_overview.", plot_format, sep="")), device=plot_format, width = 960/150, height = 480/75, plot = p12))
}else{
# promethion
suppressMessages(ggsave(filename = file.path(output.dir, paste("gb_per_channel_overview.", plot_format, sep="")), device=plot_format, width = 960/75, height = 480/75, plot = p12))
}
return(d)
}
combined.flowcell <- function(d, output.dir, q=8){
# function to analyse combined data from multiple flowcells
# useful for getting an overall impression of the combined data
flog.info("Creating output directory")
out.txt = file.path(output.dir, "summary.yaml")
# write summaries
flog.info(paste("Summarising combined data from all flowcells, saving to:", out.txt))
# tidy up and remove added stuff
drops = c("cumulative.bases", "hour", "reads.per.hour")
d = d[ , !(names(d) %in% drops)]
d1 = subset(d, Q_cutoff == "All reads")
d1 = d1[with(d1, order(-sequence_length_template)), ] # sort by read length
d1$cumulative.bases = cumsum(as.numeric(d1$sequence_length_template))
d2 = subset(d, Q_cutoff == q_title)
d2 = d2[with(d2, order(-sequence_length_template)), ] # sort by read length
d2$cumulative.bases = cumsum(as.numeric(d2$sequence_length_template))
d1$Q_cutoff = as.factor(d1$Q_cutoff)
d2$Q_cutoff = as.factor(d2$Q_cutoff)
all.reads.summary = summary.stats(d1, Q_cutoff = "All reads")
q10.reads.summary = summary.stats(d2, Q_cutoff = q_title)
summary = list("input file" = input.file,
"All reads" = all.reads.summary,
cutoff = q10.reads.summary,
"notes" = 'ultralong reads refers to the largest set of reads with N50>100KB')
names(summary)[3] = q_title
write(as.yaml(summary), out.txt)
d = rbind(d1, d2)
d$Q_cutoff = as.factor(d$Q_cutoff)
d1 = 0
d2 = 0
# set up variable sizes
if(smallfig == TRUE){ p1m = 0.5 }else{ p1m = 1.0 }
# make plots
flog.info("Plotting combined length histogram")
p1 = ggplot(d, aes(x = sequence_length_template, fill = Q_cutoff)) +
geom_histogram(bins = 300) +
scale_x_log10(minor_breaks=log10_minor_break(), breaks = log10_major_break()) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
theme(text = element_text(size = 15)) +
xlab("Read length (bases)") +
ylab("Number of reads") +
guides(fill=FALSE) + scale_fill_viridis(discrete = TRUE, begin = 0.25, end = 0.75)
suppressMessages(ggsave(filename = file.path(output.dir, paste("combined_length_histogram.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p1))
flog.info("Plotting combined mean Q score histogram")
p2 = ggplot(d, aes(x = mean_qscore_template, fill = Q_cutoff)) +
geom_histogram(bins = 300) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
theme(text = element_text(size = 15)) +
xlab("Mean Q score of read") +
ylab("Number of reads") +
guides(fill=FALSE) + scale_fill_viridis(discrete = TRUE, begin = 0.25, end = 0.75)
suppressMessages(ggsave(filename = file.path(output.dir, paste("combined_q_histogram.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p2))
flog.info("Plotting combined yield by length")
p4 = ggplot(d, aes(x=sequence_length_template, y=cumulative.bases/1000000000, colour = Q_cutoff)) +
geom_line(size = 1) +
xlab("Minimum read length (bases)") +
ylab("Total yield in gigabases") +
scale_colour_viridis(discrete = TRUE, begin = 0.25, end = 0.75, guide = guide_legend(title = "Reads")) +
theme(text = element_text(size = 15))
xmax = max(d$sequence_length_template[which(d$cumulative.bases > 0.01 * max(d$cumulative.bases))])
p4 = p4 + scale_x_continuous(limits = c(0, xmax))
suppressMessages(ggsave(filename = file.path(output.dir, "combined_yield_by_length.png"), device=plot_format, width = p1m*960/75, height = p1m*480/75, plot = p4))
}
multi.flowcell = function(input.file, output.base, q){
# wrapper function to allow parallelisation of single-flowcell
# analyses when >1 flowcell is analysed in one run
d = single.flowcell(input.file, output.dir, q)
return(d)
}
multi.plots = function(dm, output.dir){
# function to plot data from multiple flowcells,
# where the data is not combined (as in combined.flowcell() )
# but instead just uses multiple lines on each plot.
muxes = seq(from = 0, to = max(dm$hour), by = 8)
# set up variable sizes
if(smallfig == TRUE){ p1m = 0.5 }else{ p1m = 1.0 }
# make plots
flog.info("Plotting length distributions")
p1 = ggplot(dm, aes(x = sequence_length_template)) +
geom_line(stat="density", aes(colour = flowcell), size = 1) +
scale_x_log10(minor_breaks=log10_minor_break(), breaks = log10_major_break()) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
theme(text = element_text(size = 15)) +
xlab("Read length (bases)") +
ylab("Density")
suppressMessages(ggsave(filename = file.path(output.dir, paste("length_distributions.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p1)) #
flog.info("Plotting mean Q score distributions")
p2 = ggplot(dm, aes(x = mean_qscore_template)) +
geom_line(stat="density", aes(colour = flowcell), size = 1) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
theme(text = element_text(size = 15)) +
xlab("Mean Q score of read") +
ylab("Density")
suppressMessages(ggsave(filename = file.path(output.dir, paste("q_distributions.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p2)) #
flog.info("Plotting flowcell yield over time")
p5 = ggplot(dm, aes(x=start_time/3600, y=cumulative.bases.time/1000000000, colour = flowcell)) +
geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
geom_line(size = 1) +
xlab("Hours into run") +
ylab("Total yield in gigabases") +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y") +
theme(text = element_text(size = 15))
suppressMessages(ggsave(filename = file.path(output.dir, paste("yield_over_time.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p5)) #
flog.info("Plotting flowcell yield by length")
p6 = ggplot(dm, aes(x=sequence_length_template, y=cumulative.bases/1000000000, colour = flowcell)) +
geom_line(size = 1) +
xlab("Minimum read length (bases)") +
ylab("Total yield in gigabases") +
theme(text = element_text(size = 15)) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y")
xmax = max(dm$sequence_length_template[which(dm$cumulative.bases > 0.01 * max(dm$cumulative.bases))])
p6 = p6 + scale_x_continuous(limits = c(0, xmax))
suppressMessages(ggsave(filename = file.path(output.dir, paste("yield_by_length.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p6)) #
flog.info("Plotting sequence length over time")
p7 = ggplot(dm, aes(x=start_time/3600, y=sequence_length_template, colour = flowcell)) +
geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
theme(text = element_text(size = 15)) +
geom_smooth() +
xlab("Hours into run") +
ylab("Mean read length (bases)") +
ylim(0, NA) +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y")
suppressMessages(ggsave(filename = file.path(output.dir, paste("length_by_hour.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p7))
flog.info("Plotting Q score over time")
p8 = ggplot(dm, aes(x=start_time/3600, y=mean_qscore_template, colour = flowcell)) +
geom_vline(xintercept = muxes, colour = 'red', linetype = 'dashed', alpha = 0.5) +
theme(text = element_text(size = 15)) +
geom_smooth() +
xlab("Hours into run") +
ylab("Mean Q score") +
facet_wrap(~Q_cutoff, ncol = 1, scales = "free_y")
suppressMessages(ggsave(filename = file.path(output.dir, paste("q_by_hour.", plot_format, sep="")), device=plot_format, width = p1m*960/75, height = p1m*960/75, plot = p8))
}
# Choose how to act depending on whether we have a single input file or mulitple input files
if(file_test("-f", input.file)==TRUE & length(test.file)>1){
# if it's an existing file (not a folder) just run one analysis
d = single.flowcell(input.file, output.dir, q)
}else if(file_test("-d", input.file)==TRUE & length(test.file)>1){
# it's a directory, recursively analyse all sequencing_summary.txt files
# get a list of all sequencing_summary.txt files, recursively
summaries = list.files(path = input.file, pattern = "sequencing_summary.txt", recursive = TRUE, full.names = TRUE)
flog.info("")
flog.info("**** Analysing the following files ****")
flog.info(summaries)
# if the user passes a directory with only one sequencing_summary.txt file...
if(length(summaries) == 1){
d = single.flowcell(summaries[1], output.dir, q)
flog.info('**** Analysis complete ****')
}else{
# analyse each one and keep the returns in a list
if(combined_only == FALSE){
results = mclapply(summaries, multi.flowcell, output.dir, q, mc.cores = cores)
}else{
results = mclapply(summaries, load_summary, min.q = c(-Inf, q), mc.cores = cores)
}
# rbind that list
flog.info('**** Analysing data from all flowcells combined ****')
dm = as.data.frame(rbindlist(results))
# now do the single plot on ALL the output
if(is.na(opt$output.dir)){
combined.output = file.path(input.file, "combinedQC")
} else {
# the user supplied an output dir
combined.output = file.path(opt$output.dir, "combinedQC")
}
flog.info(paste("Plots from the combined output will be saved in", combined.output))
dir.create(combined.output, recursive = TRUE)
combined.flowcell(dm, combined.output, q)
multi.plots(dm, combined.output)
flog.info('**** Analysis complete ****')
flog.info('If you use MinIONQC in your published work, please cite:')
flog.info('R Lanfear, M Schalamun, D Kainer, W Wang, B Schwessinger (2018). MinIONQC: fast and simple quality control for MinION sequencing data, Bioinformatics, bty654')
flog.info('https://doi.org/10.1093/bioinformatics/bty654')
}
}else{
#WTF
flog.warn(paste("Couldn't find a sequencing summary file in your input which was: ",
input.file,
"\nThe input must be either a sequencing_summary.txt file, or a directory containing one or more such files"))
}