-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathga.py
executable file
·176 lines (167 loc) · 6.5 KB
/
ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import random
import time
import os
class GA():
def __init__(self, vehicle_num, vehicles_speed, target_num, targets, time_lim):
# vehicles_speed,targets in the type of narray
self.vehicle_num = vehicle_num
self.vehicles_speed = vehicles_speed
self.target_num = target_num
self.targets = targets
self.time_lim = time_lim
self.map = np.zeros(shape=(target_num+1, target_num+1), dtype=float)
self.pop_size = 50
self.p_cross = 0.6
self.p_mutate = 0.005
for i in range(target_num+1):
self.map[i, i] = 0
for j in range(i):
self.map[j, i] = self.map[i, j] = np.linalg.norm(
targets[i, :2]-targets[j, :2])
self.pop = np.zeros(
shape=(self.pop_size, vehicle_num-1+target_num-1), dtype=np.int32)
self.ff = np.zeros(self.pop_size, dtype=float)
for i in range(self.pop_size):
for j in range(vehicle_num-1):
self.pop[i, j] = random.randint(0, target_num)
for j in range(target_num-1):
self.pop[i, vehicle_num+j -
1] = random.randint(0, target_num-j-1)
self.ff[i] = self.fitness(self.pop[i, :])
self.tmp_pop = np.array([])
self.tmp_ff = np.array([])
self.tmp_size = 0
def fitness(self, gene):
ins = np.zeros(self.target_num+1, dtype=np.int32)
seq = np.zeros(self.target_num, dtype=np.int32)
ins[self.target_num] = 1
for i in range(self.vehicle_num-1):
ins[gene[i]] += 1
rest = np.array(range(1, self.target_num+1))
for i in range(self.target_num-1):
seq[i] = rest[gene[i+self.vehicle_num-1]]
rest = np.delete(rest, gene[i+self.vehicle_num-1])
seq[self.target_num-1] = rest[0]
i = 0 # index of vehicle
pre = 0 # index of last target
post = 0 # index of ins/seq
t = 0
reward = 0
while i < self.vehicle_num:
if ins[post] > 0:
i += 1
ins[post] -= 1
pre = 0
t = 0
else:
t += self.targets[pre, 3]
past = self.map[pre, seq[post]]/self.vehicles_speed[i]
t += past
if t < self.time_lim:
reward += self.targets[seq[post], 2]
pre = seq[post]
post += 1
return reward
def selection(self):
roll = np.zeros(self.tmp_size, dtype=float)
roll[0] = self.tmp_ff[0]
for i in range(1, self.tmp_size):
roll[i] = roll[i-1]+self.tmp_ff[i]
for i in range(self.pop_size):
xx = random.uniform(0, roll[self.tmp_size-1])
j = 0
while xx > roll[j]:
j += 1
self.pop[i, :] = self.tmp_pop[j, :]
self.ff[i] = self.tmp_ff[j]
def mutation(self):
for i in range(self.tmp_size):
flag = False
for j in range(self.vehicle_num-1):
if random.random() < self.p_mutate:
self.tmp_pop[i, j] = random.randint(0, self.target_num)
flag = True
for j in range(self.target_num-1):
if random.random() < self.p_mutate:
self.tmp_pop[i, self.vehicle_num+j -
1] = random.randint(0, self.target_num-j-1)
flag = True
if flag:
self.tmp_ff[i] = self.fitness(self.tmp_pop[i, :])
def crossover(self):
new_pop = []
new_ff = []
new_size = 0
for i in range(0, self.pop_size, 2):
if random.random() < self.p_cross:
x1 = random.randint(0, self.vehicle_num-2)
x2 = random.randint(0, self.target_num-2)+self.vehicle_num
g1 = self.pop[i, :]
g2 = self.pop[i+1, :]
g1[x1:x2] = self.pop[i+1, x1:x2]
g2[x1:x2] = self.pop[i, x1:x2]
new_pop.append(g1)
new_pop.append(g2)
new_ff.append(self.fitness(g1))
new_ff.append(self.fitness(g2))
new_size += 2
self.tmp_size = self.pop_size+new_size
self.tmp_pop = np.zeros(
shape=(self.tmp_size, self.vehicle_num-1+self.target_num-1), dtype=np.int32)
self.tmp_pop[0:self.pop_size, :] = self.pop
self.tmp_pop[self.pop_size:self.tmp_size, :] = np.array(new_pop)
self.tmp_ff = np.zeros(self.tmp_size, dtype=float)
self.tmp_ff[0:self.pop_size] = self.ff
self.tmp_ff[self.pop_size:self.tmp_size] = np.array(new_ff)
def run(self):
print("GA start, pid: %s" % os.getpid())
start_time = time.time()
cut = 0
count = 0
while count < 500:
self.crossover()
self.mutation()
self.selection()
new_cut = self.tmp_ff.max()
if cut < new_cut:
cut = new_cut
count = 0
gene = self.tmp_pop[np.argmax(self.tmp_ff)]
else:
count += 1
ins = np.zeros(self.target_num+1, dtype=np.int32)
seq = np.zeros(self.target_num, dtype=np.int32)
ins[self.target_num] = 1
for i in range(self.vehicle_num-1):
ins[gene[i]] += 1
rest = np.array(range(1, self.target_num+1))
for i in range(self.target_num-1):
seq[i] = rest[gene[i+self.vehicle_num-1]]
rest = np.delete(rest, gene[i+self.vehicle_num-1])
seq[self.target_num-1] = rest[0]
task_assignment = [[] for i in range(self.vehicle_num)]
i = 0 # index of vehicle
pre = 0 # index of last target
post = 0 # index of ins/seq
t = 0
reward = 0
while i < self.vehicle_num:
if ins[post] > 0:
i += 1
ins[post] -= 1
pre = 0
t = 0
else:
t += self.targets[pre, 3]
past = self.map[pre, seq[post]]/self.vehicles_speed[i]
t += past
if t < self.time_lim:
task_assignment[i].append(seq[post])
reward += self.targets[seq[post], 2]
pre = seq[post]
post += 1
print("GA result:", task_assignment)
end_time = time.time()
print("GA time:", end_time - start_time)
return task_assignment, end_time - start_time