-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_hippo.py
40 lines (34 loc) · 1002 Bytes
/
train_hippo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gym
from gym.wrappers.flatten_observation import FlattenObservation
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.vec_env.vec_monitor import VecMonitor
from hippo.hippo import learn, extract_reward_fn
import numpy as np
ENV = "FetchReach-v1"
def run_env():
env = gym.make(ENV)
env.reset()
while True:
action = env.action_space.sample()
env.step(action)
env.render()
def make_env():
env = gym.make(ENV)
env = env
return env
if __name__ == '__main__':
nenvs = 4
env_fns = [make_env for _ in range(4)]
env = VecMonitor(DummyVecEnv(env_fns))
learn(
network='mlp',
env=env,
total_timesteps=int(1e6),
nsteps=2048,
nbatch=2*nenvs*2048,
log_interval=1,
reward_fn=extract_reward_fn(env_fns[0]),
buffer_capacity=2*nenvs*2048,
hindsight = 0.5
)