-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathE_radiomics_stats.py
576 lines (491 loc) · 24 KB
/
E_radiomics_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# -*- coding: utf-8 -*-
"""
@author: Raluca Sandu
"""
import argparse
import sys
import numpy as np
import pandas as pd
import seaborn as sns
from scripts.scatter_plot import scatter_plot
sns.set(style="ticks")
# plt.style.use('ggplot')
# %%
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input_file", required=True, help="input file pooled radiomics ")
# e.g. Radiomics_Radii_Chemo_LTP_Distances_ECALSS
args = vars(ap.parse_args())
subcapsular_lesions_only = None
# "Proximity_to_surface"
# FALSE: non subcapsular AKA Deep Tumors
# TRUE: subcapsular AKA subcapsular TUmors
df_input = pd.read_excel(args["input_file"], sheet_name="radiomics")
# %% BOXPLOTS
# plot_boxplots_chemo(df_input)
# plot_boxplots_volumes(df_input)
# plot_boxplots_subcapsular(df_input)
#%%
if subcapsular_lesions_only is not None:
df = df_input[df_input['Proximity_to_surface'] == subcapsular_lesions_only]
if subcapsular_lesions_only is False:
flag_subcapsular_title = 'Non-Subcapsular Tumors.'
else:
flag_subcapsular_title = 'Subcapsular Tumors.'
else:
flag_subcapsular_title = ''
df = df_input.copy()
# %%
# rmv empty rows
df['Energy [kj]'].replace('', np.nan, inplace=True)
try:
df['MISSING'].replace('', np.nan, inplace=True)
except Exception:
print("column MISSING is not present in the input file")
print("1. Removing RadioFrequency Devices from the input file")
df = df[df['Device_name'] != 'Boston Scientific (Boston Scientific - RF 3000)']
print("2. Droping NaNs")
print('2.1 Drop Nans from Ablation Volume')
df.dropna(subset=["Ablation Volume [ml]"], inplace=True)
# print('2.2 Drop Nans from Energy')
# df.dropna(subset=['Energy [kj]'], inplace=True)
# print('2.3 Drop Duplicates from Lesion')
df.dropna(subset=['Lesion_ID'], inplace=True)
df['Proximity_to_vessels'].replace(True, 'YES', inplace=True)
df['Proximity_to_vessels'].replace(False, 'NO', inplace=True)
df['Proximity_to_vessels'].replace('', 'NaN', inplace=True)
df.reset_index(inplace=True, drop=True)
# %% Raw Data
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'x_label': 'Energy [kJ]',
'y_label': 'Effective Ablation Volume [ml] for 3 Microwave Devices',
'title': "Ablation Volume [ml] for 3 MWA devices. " + flag_subcapsular_title,
'x_lim': 100,
'y_lim': 100,
'lin_reg': 1}
scatter_plot(df, **kwargs)
df_radiomics_amica = df[df['Device_name'] == 'Amica (Probe)']
df_radiomics_angyodinamics = df[df['Device_name'] == 'Angyodinamics (Acculis)']
df_radiomics_covidien = df[df['Device_name'] == 'Covidien (Covidien MWA)']
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'y_label': 'Effective Ablation Volume [ml]',
'legend_title': 'Amica',
'title': "Ablation Volume [ml] for Amica " + flag_subcapsular_title,
'x_lim': 100,
'y_lim': 100,
'lin_reg': 1}
scatter_plot(df_radiomics_amica, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'y_label': 'Effective Ablation Volume [ml] ',
'legend_title': 'Acculis',
'title': "Ablation Volume [ml] for Angyiodinamics (Acculis) " + flag_subcapsular_title,
'x_lim': 100,
'y_lim': 100,
'lin_reg': 1}
scatter_plot(df_radiomics_angyodinamics, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'y_label': 'Effective Ablation Volume [ml] for Covidien',
'legend_title': 'Covidien',
'title': "Ablation Volume [ml] for Covidien " + flag_subcapsular_title,
'x_lim': 120,
'y_lim': 120,
'lin_reg': 1}
scatter_plot(df_radiomics_covidien, **kwargs)
sys.exit()
try:
df['Power'] = pd.to_numeric(df['Power'], errors='coerce')
except AttributeError:
pass
try:
df['Time_Duration_Applied'] = pd.to_numeric(df['Time_Duration_Applied'], errors='coerce')
except AttributeError:
pass
# df = df[pd.to_numeric(df['Power'], errors='coerce').notnull()]
kwargs = {'x_data': 'Power', 'y_data': 'Ablation Volume [ml]',
'title': "Ablation Volume [ml] vs Power for 3 MWA devices. " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Time_Duration_Applied', 'y_data': 'Ablation Volume [ml]',
'x_label': 'Time [s]',
'title': "Ablation Volume [ml] vs Time for 3 MWA devices. " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Power',
'title': "Energy [kJ] vs. Power [W] " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Time_Duration_Applied',
'y_label': 'Time [s]',
'title': "Energy [kJ] vs. Time [s] " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Tumour Volume [ml]', 'y_data': 'Ablation Volume [ml]',
'y_label': 'Effective Ablation Volume [ml] for 3 MWA Devices',
'title': "Tumor Volume [ml] vs Ablation Volume [ml] for 3 MWA devices. " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'y_label': 'Effective Ablation Volume [ml] for 3 MWA Devices',
'title': "Ablation Volume [ml] for 3 MWA devices by Number of Chemotherapy cycles Before Ablation. ",
'lin_reg': 1,
'size': 'no_chemo_cycle'}
scatter_plot(df, **kwargs)
df['Ratio_AT_vol'] = df['Tumour Volume [ml]'] / df['Ablation Volume [ml]']
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ratio_AT_vol',
'title': "Tumor to Ablation Volume Ratio for 3 MWA devices.",
'y_label': 'R(Tumor Volume: Ablation Volume)', 'lin_reg': 1}
scatter_plot(df, **kwargs)
# %% AXES VS ENERGY ALL
# ENERGY
title = "Least Ablation Diameter vs. MWA Energy for 3 MWA Devices."
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'least_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Least Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
title = "Maximum Ablation Diameter vs. MWA Energy for 3 MWA Devices."
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'major_axis_length_ablation',
'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Maximum Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
title = "Minimum Ablation Diameter vs. MWA Energy for 3 MWA Devices."
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'minor_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Minimum Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
# POWER
title = "Least Ablation Diameter vs. MWA Power."
kwargs = {'x_data': 'Power', 'y_data': 'least_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Least Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
title = "Maximum Ablation Diameter vs. MWA Power."
kwargs = {'x_data': 'Power', 'y_data': 'major_axis_length_ablation',
'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Maximum Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
title = "Minimum Ablation Diameter vs. MWA Power."
kwargs = {'x_data': 'Power', 'y_data': 'minor_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Minimum Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
#Time_Duration_Applied
title = "Least Ablation Diameter vs. MWA Time."
kwargs = {'x_data': 'Time_Duration_Applied', 'y_data': 'least_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Least Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
title = "Maximum Ablation Diameter vs. MWA Time."
kwargs = {'x_data': 'Time_Duration_Applied', 'y_data': 'major_axis_length_ablation',
'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Maximum Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
title = "Minimum Ablation Diameter vs. MWA Time."
kwargs = {'x_data': 'Time_Duration_Applied', 'y_data': 'minor_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Minimum Ablation Diameter [mm]'}
scatter_plot(df, **kwargs)
# %%
print('3. Dropping Outliers from the Energy Column using val < quantile 0.98')
q = df['Energy [kj]'].quantile(0.98)
df1_no_outliers = df[df['Energy [kj]'] < q]
df1_no_outliers.reset_index(inplace=True, drop=True)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml] (parametrized_formula)',
'title': "Energy vs Ablation Volume PCA axes for 3 MWA devices. Outliers Removed." + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df1_no_outliers, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml] (manufacturers)',
'title': "Ablation Volumes from Brochure. Outliers Removed. " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df1_no_outliers, **kwargs)
# kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Tumour Volume [ml]',
# 'title': "Tumors Volumes for 3 MWA devices. Outliers Removed.",
# 'lin_reg': 1}
# scatter_plot(df1_no_outliers, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'title': "Ablation Volumes for 3 MWA devices.Outliers Removed. " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df1_no_outliers, **kwargs)
kwargs = {'x_data': 'Tumour Volume [ml]', 'y_data': 'Ablation Volume [ml]',
'title': "Tumor Volume [ml] vs Ablation Volume [ml]. Outliers Removed. " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df1_no_outliers, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'title': "Ablation Volume [ml] for 3 MWA devices by Number of Chemotherapy cycles Before Ablation. Outliers Removed. ",
'lin_reg': 1,
'colormap': 'no_chemo_cycle'}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml] (parametrized_formula)',
'title': "Ablation Volumes based on the 3 ellipsoid axes for 3 MWA devices. Outliers Removed. ",
'lin_reg': 1}
scatter_plot(df1_no_outliers, **kwargs)
df1_no_outliers['Ratio_AT_vol'] = df1_no_outliers['Tumour Volume [ml]'] / df1_no_outliers['Ablation Volume [ml]']
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ratio_AT_vol',
'title': "Tumor to Ablation Volume Ratio for 3 MWA devices.Outliers Removed.",
'y_label': 'R(Tumor Volume: Ablation Volume)', 'lin_reg': 1}
scatter_plot(df1_no_outliers, **kwargs)
title = "Major Ablation Diameter vs. Least Axis Diameter."
kwargs = {'x_data': 'least_axis_length_ablation', 'y_data': 'major_axis_length_ablation',
'title': title,
'lin_reg': 1}
scatter_plot(df1_no_outliers, **kwargs)
title = "Maximum vs. Minimum Ablation Diameter plotted as a function of tumor size."
kwargs = {'x_data': 'minor_axis_length_ablation', 'y_data': 'major_axis_length_ablation',
'title': title,
'lin_reg': 1,
'size': 'Tumour Volume [ml]'}
scatter_plot(df1_no_outliers, **kwargs)
title = "Maximum vs. Minimum Ablation Diameter plotted as a function of energy."
kwargs = {'x_data': 'minor_axis_length_ablation', 'y_data': 'major_axis_length_ablation',
'title': title,
'lin_reg': 1,
'size': 'Energy [kj]'}
scatter_plot(df1_no_outliers, **kwargs)
title = "Maximum vs. 2nd largest Ablation Diameter plotted as a function of energy."
kwargs = {'x_data': 'major_axis_length_ablation', 'y_data': 'least_axis_length_ablation',
'title': title,
'lin_reg': 1,
'size': 'Energy [kj]'}
scatter_plot(df1_no_outliers, **kwargs)
title = "Maximum vs. 2nd largest Ablation Diameter plotted as a function of tumor size."
kwargs = {'x_data': 'major_axis_length_ablation', 'y_data': 'least_axis_length_ablation',
'title': title,
'lin_reg': 1,
'size': 'Tumour Volume [ml]'}
scatter_plot(df1_no_outliers, **kwargs)
# %% group by proximity to vessels
scatter_plot_groups(df)
# %% ANGYODINAMICS
fig, ax = plt.subplots()
df_angyodinamics = df1_no_outliers[df1_no_outliers["Device_name"] == "Angyodinamics (Acculis)"]
# df_angyodinamics.dropna(subset=['Energy [kj]'], inplace=True)
# df_angyodinamics.dropna(subset=['least_axis_length_ablation'], inplace=True)
title = "Maximum vs. Minimum Ablation Diameter plotted as a function of tumor size (Angyodinamics)."
kwargs = {'x_data': 'minor_axis_length_ablation', 'y_data': 'major_axis_length_ablation',
'title': title,
'lin_reg': 1,
'size': 'Tumour Volume [ml]'}
scatter_plot(df_angyodinamics, **kwargs)
title = "Maximum vs. Minimum Ablation Diameter plotted as a function of energy (Angyodinamics)."
kwargs = {'x_data': 'minor_axis_length_ablation', 'y_data': 'major_axis_length_ablation',
'title': title,
'lin_reg': 1,
'size': 'Energy [kj]'}
scatter_plot(df_angyodinamics, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml] (manufacturers)',
'title': "Ablation Volumes from Brochure for Angiodynamics. " + flag_subcapsular_title, 'lin_reg': 1}
scatter_plot(df_angyodinamics, **kwargs)
kwargs = {'x_data': 'Ablation Volume [ml] (manufacturers)', 'y_data': 'Ablation Volume [ml]',
'title': "Ablation Volumes from Manufacturer's Brochure vs Resulted Measured Ablation Volume for Angiodynamics. " + flag_subcapsular_title,
'lin_reg': 1}
scatter_plot(df_angyodinamics, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml] (parametrized_formula)',
'title': "Ablation Volumes PCA axes for Angiodynamics. ", 'lin_reg': 1}
scatter_plot(df_angyodinamics, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'Ablation Volume [ml]',
'title': "Ablation Volumes for tumors treated with Angiodynamics.",
'lin_reg': 1}
scatter_plot(df_angyodinamics, **kwargs)
title = "Least Ablation Diameter vs. MWA Energy for tumors treated with Angiodynamics."
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'least_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Least Ablation Diameter [mm]'}
scatter_plot(df_angyodinamics, **kwargs)
title = "Major Ablation Diameter vs. MWA Energy for tumors treated with Angiodynamics."
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'major_axis_length_ablation',
'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Maximum Ablation Diameter [mm]'}
scatter_plot(df_angyodinamics, **kwargs)
title = "Minor Ablation Diameter vs. MWA Energy for tumors treated with Angiodynamics."
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'minor_axis_length_ablation', 'title': title + flag_subcapsular_title,
'lin_reg': 1,
'y_label': 'Minimum Ablation Diameter [mm]'}
scatter_plot(df_angyodinamics, **kwargs)
# %% Gray level variance tumor vs energy
# diameter3D_tumor
# Tumour Volume [ml]
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'intensity_mean_tumor',
'title': 'Energy Applied vs Mean Tumor Pixel Intensity',
'colormap': 'Tumour Volume [ml]',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'intensity_variance_tumor',
'title': 'Energy Applied vs Variance Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'intensity_uniformity_tumor',
'title': 'Energy Applied vs Tumor Pixel Uniformity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'gray_lvl_nonuniformity_tumor',
'title': 'Energy Applied vs Tumor Pixel NonUniformity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
# %% tumor size vs intensities
kwargs = {'x_data': 'least_axis_length_tumor', 'y_data': 'intensity_mean_tumor',
'title': 'Least Axis Length Tumor vs Mean Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'minor_axis_length_tumor', 'y_data': 'intensity_mean_tumor',
'title': 'Minor Axis Length Tumor vs Mean Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'major_axis_length_tumor', 'y_data': 'intensity_mean_tumor',
'title': 'Major Axis Length Tumor vs Mean Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
# %% gray lvl vs ablation metrics
kwargs = {'x_data': 'least_axis_length_ablation', 'y_data': 'intensity_mean_tumor',
'title': 'Least Ablation Axis Length vs Mean Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'least_axis_length_ablation', 'y_data': 'intensity_variance_tumor',
'title': 'Least Ablation Axis Length vs Variance Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'least_axis_length_ablation', 'y_data': 'intensity_uniformity_tumor',
'title': 'Least Ablation Axis Length vs Uniformity Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'minor_axis_length_ablation', 'y_data': 'intensity_variance_tumor',
'title': 'Minor Axis Length Ablation vs VarianceTumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df_angyodinamics, **kwargs)
kwargs = {'x_data': 'minor_axis_length_ablation', 'y_data': 'intensity_mean_tumor',
'title': 'Minor Axis Length Ablation vs Mean Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'minor_axis_length_ablation', 'y_data': 'intensity_uniformity_tumor',
'title': 'Minor Axis Length Ablation vs Mean Tumor Pixel Intensity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'major_axis_length_ablation', 'y_data': 'intensity_uniformity_tumor',
'title': 'Major Axis Length Ablation vs Tumor Pixel Uniformity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'major_axis_length_ablation', 'y_data': 'intensity_mean_tumor',
'title': 'Major Axis Length Ablation vs Mean Tumor Pixel',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'major_axis_length_ablation', 'y_data': 'intensity_variance_tumor',
'title': 'Major Axis Length Ablation vs Mean Variance Tumor Pixel',
'lin_reg': 1}
scatter_plot(df, **kwargs)
kwargs = {'x_data': 'Energy [kj]', 'y_data': 'gray_lvl_nonuniformity_tumor',
'title': 'Energy Applied vs Tumor Pixel NonUniformity',
'lin_reg': 1}
scatter_plot(df, **kwargs)
# %% percentage distances histograms
fig, ax = plt.subplots()
df["safety_margin_distribution_0"].replace(0, np.nan, inplace=True)
df["safety_margin_distribution_5"].replace(0, np.nan, inplace=True)
df["safety_margin_distribution_10"].replace(0, np.nan, inplace=True)
idx_margins = df.columns.get_loc('safety_margin_distribution_0')
df_margins = df.iloc[:, idx_margins: idx_margins + 3].copy()
df_margins.reset_index(drop=True, inplace=True)
df_margins_sort = pd.DataFrame(np.sort(df_margins.values, axis=0), index=df_margins.index, columns=df_margins.columns)
# df_margins_sort.hist(alpha=0.5)
labels = [{'Ablation Surface Margin ' + r'$x > 5$' + 'mm '},
{'Ablation Surface Margin ' + r'$0 \leq x \leq 5$' + 'mm'}, {'Ablation Surface Margin ' + r'$x < 0$' + 'mm'}]
for idx, col in enumerate(df_margins.columns):
sns.distplot(df_margins[col], label=labels[idx],
bins=range(0, 101, 10),
kde=False, hist_kws=dict(edgecolor='black'))
plt.xlabel('Percentage of Surface Margin Covered for different ablation margins ranges', fontsize=20, color='black')
plt.ylabel('Frequency', fontsize=20, color='black')
plt.title('Ablation Surface Margin Coverages [%] Histogram for all MWA device models.')
plt.legend(fontsize=20)
plt.xticks(range(0, 101, 10))
figpathHist = os.path.join("figures", "surface margin frequency percentages overlaid")
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
# %% percentage distances histograms for angyodinamics
fig, ax = plt.subplots()
df_angyodinamics["safety_margin_distribution_0"].replace(0, np.nan, inplace=True)
df_angyodinamics["safety_margin_distribution_5"].replace(0, np.nan, inplace=True)
df_angyodinamics["safety_margin_distribution_10"].replace(0, np.nan, inplace=True)
idx_margins = df_angyodinamics.columns.get_loc('safety_margin_distribution_0')
df_margins = df_angyodinamics.iloc[:, idx_margins: idx_margins + 3].copy()
df_margins.reset_index(drop=True, inplace=True)
df_margins_sort = pd.DataFrame(np.sort(df_margins.values, axis=0), index=df_margins.index, columns=df_margins.columns)
# df_margins_sort.hist(alpha=0.5)
labels = [{'Ablation Surface Margin ' + r'$x > 5$' + 'mm '},
{'Ablation Surface Margin ' + r'$0 \leq x \leq 5$' + 'mm'}, {'Ablation Surface Margin ' + r'$x < 0$' + 'mm'}]
for idx, col in enumerate(df_margins.columns):
sns.distplot(df_margins[col], label=labels[idx],
bins=range(0, 101, 10),
kde=False, hist_kws=dict(edgecolor='black'))
plt.xlabel('Percentage of Surface Margin Covered for different ablation margins ranges', fontsize=20, color='black')
plt.ylabel('Frequency', fontsize=20, color='black')
plt.title('Ablation Surface Margin Coverages [%] Histogram for Angiodynamics MWA device model.')
plt.legend(fontsize=20)
plt.xticks(range(0, 101, 10))
figpathHist = os.path.join("figures", "surface margin frequency percentages overlaid angiodyanmics")
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
# %% histogram axes ablation
plt.figure()
df.hist(column=["major_axis_length_ablation"])
figpathHist = os.path.join("figures", "histogram major axis length ablation")
plt.ylabel('mm')
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
ax.set_xlim([0, 100])
plt.xlim(([0, 100]))
plt.ylim(([0, 50]))
plt.ylabel('mm')
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
df.hist(column=["least_axis_length_ablation"])
figpathHist = os.path.join("figures", "histogram least axis length ablation ")
plt.ylabel('mm')
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
ax.set_xlim([0, 100])
plt.xlim(([0, 100]))
plt.ylim(([0, 50]))
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
df.hist(column=["minor_axis_length_ablation"])
figpathHist = os.path.join("figures", "histogram minor axis length ablation")
plt.ylabel('mm')
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
ax.set_xlim([0, 100])
plt.xlim(([0, 100]))
plt.ylim(([0, 50]))
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
print('All plots saved as *.png files in dev folder figures')
plt.close('all')
# %% histogram axis tumor
plt.figure()
df.hist(column=["major_axis_length_tumor"])
figpathHist = os.path.join("figures", "histogram major axis length tumor")
plt.ylabel('mm')
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
ax.set_xlim([0, 100])
plt.xlim(([0, 100]))
plt.ylim(([0, 50]))
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
df.hist(column=["least_axis_length_tumor"])
figpathHist = os.path.join("figures", "histogram least axis length tumor")
plt.ylabel('mm')
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
ax.set_xlim([0, 100])
plt.xlim(([0, 100]))
plt.ylim(([0, 50]))
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
df.hist(column=["minor_axis_length_tumor"])
figpathHist = os.path.join("figures", "histogram minor axis length tumor")
plt.ylabel('mm')
plt.tick_params(labelsize=20, color='black')
ax.tick_params(colors='black', labelsize=20)
ax.set_xlim([0, 100])
plt.xlim(([0, 100]))
plt.ylim(([0, 50]))
gh.save(figpathHist, ext=['png'], close=True, width=18, height=16)
plt.close('all')