-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_plot_fits.py
129 lines (107 loc) · 5.07 KB
/
run_plot_fits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import plot_fits
import numpy as np
def calculate_source_values_Mar15():
path = "/Users/ruby/Astro/polarized_source_sims_Feb2022/fhd_rlb_polarized_source_sim_optimal_weighting_Mar2021/output_data"
filename_stokes_i = "polarized_source_MWA_sim_results_optimal_Dirty_I.fits"
filename_stokes_q = "polarized_source_MWA_sim_results_optimal_Dirty_Q.fits"
filename_stokes_u = "polarized_source_MWA_sim_results_optimal_Dirty_U.fits"
filename_stokes_v = "polarized_source_MWA_sim_results_optimal_Dirty_V.fits"
stokes_i = plot_fits.load_fits(f"{path}/{filename_stokes_i}")
stokes_q = plot_fits.load_fits(f"{path}/{filename_stokes_q}")
stokes_u = plot_fits.load_fits(f"{path}/{filename_stokes_u}")
stokes_v = plot_fits.load_fits(f"{path}/{filename_stokes_v}")
image_span = 100
x_center = 1150
y_center = 1151
stokes_i.crop_image(
new_x_range=[x_center - image_span / 2, x_center + image_span / 2],
new_y_range=[y_center - image_span / 2, y_center + image_span / 2],
inplace=True,
)
stokes_q.crop_image(
new_x_range=[x_center - image_span / 2, x_center + image_span / 2],
new_y_range=[y_center - image_span / 2, y_center + image_span / 2],
inplace=True,
)
stokes_u.crop_image(
new_x_range=[x_center - image_span / 2, x_center + image_span / 2],
new_y_range=[y_center - image_span / 2, y_center + image_span / 2],
inplace=True,
)
stokes_v.crop_image(
new_x_range=[x_center - image_span / 2, x_center + image_span / 2],
new_y_range=[y_center - image_span / 2, y_center + image_span / 2],
inplace=True,
)
max_val = np.max(stokes_i.signal_arr)
max_coords = np.where(stokes_i.signal_arr == max_val)
print(f"Stokes I intensity: {stokes_i.signal_arr[max_coords]}")
print(f"Stokes Q intensity: {stokes_q.signal_arr[max_coords]}")
print(f"Stokes U intensity: {stokes_u.signal_arr[max_coords]}")
print(f"Stokes V intensity: {stokes_v.signal_arr[max_coords]}")
stokes_q.plot(
# x_pixel_extent=[x_center - image_span / 2, x_center + image_span / 2],
# y_pixel_extent=[y_center - image_span / 2, y_center + image_span / 2],
signal_extent=[-7e5, 7e5],
)
def plot_images_Mar17():
path = "/Users/ruby/Astro/polarized_source_sims_Feb2022/fhd_rlb_polarized_source_sim_optimal_weighting_Mar2021/output_data"
stokes_signal_extent = [-1e5, 3.5e5]
stokes = ["I", "Q", "U", "V"]
for stokes_name in stokes:
filename = f"polarized_source_MWA_sim_results_optimal_Dirty_{stokes_name}.fits"
plot_fits.plot_fits_file(
f"{path}/{filename}",
signal_extent=stokes_signal_extent,
save_filename=f"/Users/ruby/Documents/2022 Winter/Polarimetry paper review/plots/Stokes{stokes_name}.png",
title=f"Stokes {stokes_name}",
)
instr_signal_extents = [
[-1e4, 3.5e4],
[-1e4, 3.5e4],
[-0.5e3, 1.75e3],
[-0.5e3 / 120, 1.75e3 / 120],
]
instr_names = ["XX", "YY", "XY_real", "XY_imaginary"]
titles = ["pp", "qq", "pq, Real Part", "pq, Imaginary Part"]
for ind, instr_name in enumerate(instr_names):
filename = f"polarized_source_MWA_sim_results_optimal_Dirty_{instr_name}.fits"
plot_fits.plot_fits_file(
f"{path}/{filename}",
signal_extent=instr_signal_extents[ind],
save_filename=f"/Users/ruby/Documents/2022 Winter/Polarimetry paper review/plots/Instr_{instr_name}.png",
title=titles[ind],
)
def plot_skyh5_test_Mar23():
path = (
"/Users/ruby/Astro/FHD_outputs/fhd_rlb_model_diffuse_skyh5_Mar2022/output_data"
)
stokes = ["I", "Q", "U", "V"]
for stokes_name in stokes:
filename = f"1061316296_optimal_Model_{stokes_name}.fits"
plot_fits.plot_fits_file(
f"{path}/{filename}",
save_filename=f"/Users/ruby/Astro/FHD_outputs/fhd_rlb_model_diffuse_skyh5_Mar2022/1061316296_optimal_Model_{stokes_name}.png",
title=f"Stokes {stokes_name}",
)
def plot_marin_images_Apr8():
filename = (
"/Users/ruby/Astro/LWA_data/LWA_data_20220307/20220307_175923_15MHz-dirty.fits"
)
plot_fits.plot_fits_file(
filename,
# save_filename = f"/Users/ruby/Astro/FHD_outputs/fhd_rlb_model_diffuse_skyh5_Mar2022/1061316296_optimal_Model_{stokes_name}.png",
)
def plot_mmode_sims_Apr19():
filename = "/Users/ruby/Astro/FHD_outputs/fhd_rlb_LWA_imaging_optimal_Apr2022/output_data/20220307_175923_61MHz_uncalib_optimal_Residual_I.fits"
plot_fits.plot_fits_file(
filename,
edge_crop_ratio=0,
signal_extent=[-5e6, 5e6],
# save_filename = f"/Users/ruby/Astro/FHD_outputs/fhd_rlb_LWA_model_mmode_map_Apr2022/20220307_175923_61MHz_calib_optimal_Dirty_I.png",
)
if __name__ == "__main__":
plot_fits.plot_fits_file(
"/Users/ruby/Astro/LWA_data/LWA_data_20220307/20220307_175923_66MHz-dirty.fits",
# save_filename = f"/Users/ruby/Astro/FHD_outputs/fhd_rlb_model_diffuse_skyh5_Mar2022/1061316296_optimal_Model_{stokes_name}.png",
)