-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
41 lines (31 loc) · 1.34 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Import packages
import torch
import torch.nn as nn
import torch.nn.functional as F
class QNetwork(nn.Module):
"""Q Network."""
def __init__(self, state_size, action_size, seed, use_dueling):
"""Initilize the network."""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
# Initialize parameters
self.state_size = state_size
self.action_size = action_size
self.drop_prob = 0.5
hidden_layers = [512, 128]
self.use_dueling = use_dueling
# Initialize layers
self.hidden_layers = nn.ModuleList([nn.Linear(self.state_size, hidden_layers[0])])
# Add a variable number of more hidden layers
layer_sizes = zip(hidden_layers[:-1], hidden_layers[1:])
self.hidden_layers.extend([nn.Linear(h1, h2) for h1, h2 in layer_sizes])
self.action_value = nn.Linear(hidden_layers[-1], self.action_size)
self.state_value = nn.Linear(hidden_layers[-1], 1)
def forward(self, state):
"""Define the forward pass."""
for linear in self.hidden_layers:
state = F.relu(linear(state))
if self.use_dueling:
return self.action_value(state) + self.state_value(state)
else:
return self.action_value(state)