Skip to content

Latest commit

 

History

History
115 lines (92 loc) · 4.22 KB

README.md

File metadata and controls

115 lines (92 loc) · 4.22 KB

llm4mat-tutorial

このリポジトリはDxMT AIMHack 2024 での講演資料・ハンズオン用コードです。

この講演では、LLM(大規模言語モデル)の基礎と材料科学における応用例について、ハンズオン形式で学ぶことを目的としています。 これらの資料が、LLMを使うための現代的なソフトウェアスタックへの入門と、材料科学におけるLLMの可能性を探るための助けとなれば幸いです。

リポジトリの概要

Model Inference

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer


model_id = "ysuz/Mistral-Nemo-Base-2407-bandgap"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="auto",
                                             torch_dtype=torch.float16,
                                            )

# example of input context
structure_text = """
Reduced Formula: BaSrI4
abc   :   5.807091   5.807091   8.251028
angles:  90.000000  90.000000  90.000000
pbc   :       True       True       True
space group: ('P4/mmm', 123)
Sites (6)
  #  SP      a    b         c    magmom
  0  Ba    0.5  0.5  0               -0
  1  Sr    0    0    0.5             -0
  2  I     0    0.5  0.257945         0
  3  I     0.5  0    0.257945         0
  4  I     0    0.5  0.742055         0
  5  I     0.5  0    0.742055         0

Output:
"""

prompt = f"Instruction: What is the bandgap value of following material?:\n{structure_text}\n\nOutput:\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

with torch.no_grad():
    tokens = model.generate(
        **inputs,
        max_new_tokens=256,
        do_sample=True,
        temperature=0.5,
        top_p=0.9,
        repetition_penalty=1.05,
    )
generated_text = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(f"Generated raw text:\n{generated_text}\n\n")

Environment Setup

Docker build

docker build -t mi_llm:v0.3 ./docker/

Running Experiments

Docker startup

mkdir hf_cache # for hugging face model cache dir
docker run --rm --gpus all -it --shm-size=200g -v $PWD:/workspace -v hf_cache:/root/.cache/huggingface/ mi_llm:v0.3 bash

Preparing the Materials Project (MP) Dataset

  • Download data from the Materials Project

  • Obtain an API key from MP and save it in api_keys/MP_API_KEY.txt

  • Running the following script will create sequentially numbered pkl files likemp_download/20240718_0000.pkl

python download_mp_data.py
  • dataset preparation completed

Fine-tuning LLMs

  • Generate a token from Hugging Face and place it in api_keys/hf_token.txt

  • Example of predicting physical properties (bandgap, etc.) from crystal structure:

python train_structure2property.py

Start JupyterLab for analysis

jupyter lab --allow-root --ip=0.0.0.0