-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmrmedian.ado
181 lines (164 loc) · 4.54 KB
/
mrmedian.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
*! version 0.1.0 03jun2016 Tom Palmer
program mrmedian, eclass
version 9
local version : di "version " string(_caller()) ", missing :"
if replay() {
if _by() {
error 190
}
`version' Display `0'
exit
}
syntax varlist(min=4 max=4) [if] [in] [, Weighted PENWeighted seed(string) ///
reps(integer 1000) Level(cilevel)]
local callersversion = _caller()
tokenize `"`varlist'"'
/*
4 variables
1: gd beta
2: gd SE
3: gp beta
4: gp SE
*/
tempvar betaiv weights
qui gen double `betaiv' = `1'/`3' `if' `in'
qui gen double `weights' = (`2'/`3')^-2 `if' `in'
** number of instruments
tempname k
qui count `if' `in' // TODO: missing data patterns??
scalar `k' = r(N)
if scalar(`k') < 3 {
di as err "mrmedian requires a minimum of 3 genotypes"
exit 2001
}
** put variables into Mata
qui putmata `1' `2' `3' `4' `betaiv' `weights' `if' `in', replace
** check if moremata installed
capt mata mata which mm_which()
if _rc {
di as err "The -moremata- package is required; install using"
di "{stata ssc install moremata}"
exit 499
}
** seed option
if "`seed'" != "" {
version `callersversion': set seed `seed'
}
** weighted options
if "`weighted'" == "weighted" & "`penweighted'" == "penweighted" {
di as err "Specify both weighted and penweighted options " ///
"is not allowed."
exit 198
}
** tempnames
tempname b1
tempname s1
tempname ones
tempname pw
** unweighted median
if "`weighted'" == "" & "`penweighted'" == "" {
mata `ones' = J(rows(`1'), 1, 1)
mata `b1' = weighted_median(`betaiv', `ones')
mata `s1' = weighted_median_boot(`1', `3', `2', `4', ///
`ones', reps=`reps')
}
else if "`weighted'" == "weighted" {
mata `b1' = weighted_median(`betaiv', `weights')
mata `s1' = weighted_median_boot(`1', `3', `2', `4', ///
`weights', reps=`reps')
}
else if "`penweighted'" == "penweighted" {
mata `pw' = pen_weights(`1', `3', `2')
mata `b1' = weighted_median(`betaiv', `pw')
mata `s1' = weighted_median_boot(`1', `3', `2', `4', ///
`pw', reps=`reps')
}
mata st_matrix("b", `b1')
mata st_matrix("V", `s1'^2)
local names beta
matrix colnames b = `names'
matrix colnames V = `names'
matrix rownames V = `names'
ereturn post b V
local ngeno = scalar(`k')
Display, k(`ngeno') reps(`reps') level(`level')
mata mata drop `1' `2' `3' `4' `betaiv' `weights' `b1' `s1' reps
if "`weighted'" == "" & "`penweighted'" == "" mata mata drop `ones'
if "`penweighted'" == "penweighted" mata mata drop `pw'
ereturn local cmd "mrmedian"
ereturn local cmdline `"mrmedian `0'"'
ereturn scalar k = scalar(`k')
ereturn scalar reps = `reps'
end
program Display, rclass
version 9
syntax , [K(integer 0) reps(integer 0) Level(cilevel)]
if "`k'" == "0" {
local k = e(k)
}
if "`reps'" == "0" {
local reps = e(reps)
}
local digits : length local k
local colstart = 79 - (22 + `digits')
di _n(1) _col(`colstart') as txt "Number of genotypes = " as res %`digits'.0fc `k'
local digits2 : length local reps
local colstart2 = 79 - (15 + `digits2')
di _col(`colstart2') as txt "Replications = " as res %`digits2'.0fc `reps'
ereturn display, level(`level')
return add // r(table)
end
mata
mata set matastrict on
real scalar weighted_median(real colvector betaiv,
real colvector weights)
{
real colvector order, betaivorder, weightsorder, weightssum
real scalar below, weightedest
order = order(betaiv,1)
betaivorder = betaiv[order]
weightsorder = weights[order]
weightssum = mm_colrunsum(weightsorder) - 0.5*weightsorder
weightssum = weightssum/sum(weightsorder)
below = max(mm_which(weightssum :< 0.5))
weightedest = betaivorder[below] + (betaivorder[below + 1] - ///
betaivorder[below])*(0.5 - weightssum[below])/ ///
(weightssum[below + 1] - weightssum[below])
return(weightedest)
}
real scalar weighted_median_boot(real colvector byg,
real colvector bxg,
real colvector sebyg,
real colvector sebxg,
real colvector weights,
real scalar reps)
{
real scalar sd, k
real colvector med, bxgboot, bygboot, bivboot
k = rows(byg)
med = J(reps, 1, .)
bivboot = J(k, 1, .)
for (i=1; i<=reps; i++) {
bygboot = rnormal(1, 1, byg, sebyg)
bxgboot = rnormal(1, 1, bxg, sebxg)
bivboot = bygboot :/ bxgboot
med[i] = weighted_median(bivboot, weights)
}
sd = sqrt(variance(med))
return(sd)
}
real colvector pen_weights(real colvector byg,
real colvector bxg,
real colvector sebyg)
{
real scalar betaivw
real colvector betaiv, weights, penweights, penalty
betaiv = byg :/ bxg
weights = (sebyg :/ bxg):^-2
betaivw = sum(byg:*bxg:*sebyg:^-2)/sum(bxg:^2:*sebyg:^-2)
penalty = chi2tail(1, weights:*(betaiv :- betaivw):^2)
penweights = weights:*rowmin((J(rows(byg),1,1), penalty*20))
return(penweights)
}
end
exit