-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathwhatifgpt.py
610 lines (560 loc) · 27.8 KB
/
whatifgpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import base64
import faiss
import json
import math
import os
import openai
import random
from datetime import datetime
from typing import List, Tuple
from elevenlabs import generate, play, clone, save, voices
from playsound import playsound
from PIL import Image
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.retrievers import TimeWeightedVectorStoreRetriever
from langchain.schema import HumanMessage, SystemMessage
from langchain.vectorstores import FAISS
from langchain.experimental import GenerativeAgent
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory
class Message:
def __init__(self, name: str, icon, layout: str = 'storyteller'):
if layout == 'storyteller':
message_col, icon_col = st.columns([10, 1], gap="medium")
elif layout == 'agent':
icon_col, message_col = st.columns([1, 10], gap="medium")
else:
raise ValueError("Invalid layout specified. Use 'storyteller' or 'agent'.")
self.icon = icon
icon_col.image(self.icon, caption=name)
self.markdown = message_col.markdown
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
pass
def write(self, content):
self.markdown(content)
class StorytellerAgent():
def __init__(self, name, system_message: SystemMessage, summary_history, story_main_objective, llm: ChatOpenAI,):
self.name = name
self.llm = llm
self.system_message = system_message
self.summary_history = summary_history
self.story_main_objective = story_main_objective
self.prefix = f'\n{self.name}:'
self.voice = None
self.icon = "images/the_storyteller.png"
def send(self) -> Tuple[str, bool]:
"""
Applies the chatmodel to the message history
and returns the message string
"""
summary = (f"Summary thus far: {self.summary_history}" )
message = self.llm(
[self.system_message,
HumanMessage(content=summary)]).content
return message, self.is_objective_complete(message)
def receive(self, name: str, message: str) -> None:
self.summary_history = get_summary_content(self.summary_history, name, message)
def is_objective_complete(self, message: str) -> bool:
"""
Checks if objective has been completed
"""
objective_check_prompt = [
SystemMessage(content="Determine if objective has been achieved."),
HumanMessage(content=
f"""
Story Objective: {self.story_main_objective}
Story thus far: {message}
Based on this "Summary thus far"" has the main "Story Objective" completed? If obtaining item is part of the "Story Objective", is the item(s) in the possession of the characters?
Only answer with "Yes" or "No", do not add anything else.
"""
)
]
is_complete = ChatOpenAI(temperature=0.0)(objective_check_prompt).content
return True if "yes" in is_complete.lower() else False
def narrate(self, message: str):
if not os.environ['ELEVEN_API_KEY']:
return
"""Narrate the observation using to Voice Cloned Storyteller voice, need ElevenLabs"""
if not self.voice:
for voice in voices():
if voice.name == "Storyteller":
self.voice = voice
break
else:
self.voice = clone(
name="Storyteller",
description="An old British male voice with a strong hoarseness in his throat. Perfect for story narration",
files=["./voices/Storyteller_Narration_Voice.mp3"]
)
audio = generate(text=message, voice=self.voice)
save(audio, "narration.mpeg")
playsound("narration.mpeg")
os.remove("narration.mpeg")
class WhatIfGenerativeAgent(GenerativeAgent):
sex: str
race: str
age: int
story: str
traits: str
system_message: SystemMessage = None
summary_history: str = ""
icon: str = None
voice: voice = None
def _compute_agent_summary(self) -> str:
""""""
prompt = PromptTemplate.from_template(
"Please reply with a creative description of the character {name} in 50 words or less, "
+f"also creatively include the character's traits with the description: {self.traits}."
+"Also consider {name}'s core characteristics given the"
+ " following statements:\n"
+ "{relevant_memories}"
+ "Do not add anything else."
+ "\n\nSummary: "
)
# The agent seeks to think about their core characteristics.
return (
self.chain(prompt)
.run(name=self.name, queries=[f"{self.name}'s core characteristics"])
.strip()
)
def get_stats(self, force_refresh: bool = False) -> str:
"""Return the character stats of the agent."""
current_time = datetime.now()
since_refresh = (current_time - self.last_refreshed).seconds
if (
not self.summary
or since_refresh >= self.summary_refresh_seconds
or force_refresh
):
self.summary = self._compute_agent_summary()
self.last_refreshed = current_time
return (
f"Age: {self.age}"
f"\nSex: {self.sex}"
f"\nRace: {self.race}"
f"\nStatus: {self.status}"
+f"\nInnate traits: {self.traits}\n"
)
def get_summary_description(self, force_refresh: bool = False) -> str:
"""Return a short summary of the agent."""
current_time = datetime.now()
since_refresh = (current_time - self.last_refreshed).seconds
if (
not self.summary
or since_refresh >= self.summary_refresh_seconds
or force_refresh
):
self.summary = self._compute_agent_summary()
self.last_refreshed = current_time
return (f"\n{self.summary}\n"
)
def _generate_reaction(self, observation: str, system_message: SystemMessage) -> str:
"""React to a given observation or dialogue act but with a Character Agent SystemMessage"""
human_prompt = HumanMessagePromptTemplate.from_template(
"{agent_summary_description}"
+ "\nIt is {current_time}."
+ "\n{agent_name}'s status: {agent_status}"
+ "\nSummary of relevant context from {agent_name}'s memory:"
+ "\n{relevant_memories}"
+ "\nMost recent observations: {most_recent_memories}"
+ "\nObservation: {observation}"
+ "\n\n"
)
prompt = ChatPromptTemplate.from_messages([system_message, human_prompt])
agent_summary_description = self.get_summary()
relevant_memories_str = self.summarize_related_memories(observation)
current_time_str = datetime.now().strftime("%B %d, %Y, %I:%M %p")
kwargs: Dict[str, Any] = dict(
agent_summary_description=agent_summary_description,
current_time=current_time_str,
relevant_memories=relevant_memories_str,
agent_name=self.name,
observation=observation,
agent_status=self.status,
)
consumed_tokens = self.llm.get_num_tokens(
prompt.format(most_recent_memories="", **kwargs)
)
kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens
return self.chain(prompt=prompt).run(**kwargs).strip()
def generate_reaction(self, observation: str) -> Tuple[bool, str]:
"""React to a given observation."""
story_summary_current = self.summary_history + "\n" + observation
result = self._generate_reaction(story_summary_current, self.system_message)
# Save Context to Agent's Memory
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and reacted by {result}"
},
)
return result
def setup_agent(self, system_message: SystemMessage, specified_story: str):
"""Sets the Agent post Story and Main Objective gets set"""
self.system_message = system_message
self.memory.add_memory(specified_story)
self.summary_history = specified_story
def receive(self, name: str, message: str) -> None:
"""Receives the current observation and summarize in to summary history"""
self.summary_history = get_summary_content(self.summary_history, name, message)
def narrate(self, message: str):
"""Narrate using ElevenLabs"""
if not os.environ['ELEVEN_API_KEY']:
return
if not self.voice:
for voice in voices():
if voice.name == self.name:
self.voice = voice
break
else:
if self.name.lower() in ["harry potter", "hermione granger", "ron weasley"]:
self.voice = clone(
name=self.name,
description=f"voice clone of {self.name}-like voice",
files=[f"./voices/{self.name}_Narration_Voice.mp3"]
)
else:
male_voices = ["Antoni", "Josh", "Arnold", "Adam", "Sam"]
female_voices = ["Rachel", "Bella", "Elli" ]
for voice in voices():
if self.sex.lower() == "male":
if voice.name == random.choice(male_voices):
self.voice = voice
break
else:
if voice.name == random.choice(female_voices):
self.voice = voice
break
audio = generate(text=message, voice=self.voice)
save(audio, f"{self.name}.mpeg")
playsound(f"{self.name}.mpeg")
os.remove(f"{self.name}.mpeg")
class WhatIfStorySimulator():
def __init__(self, story, mood, num_agents, is_random, agent_names, story_setting_event):
self.story = story
self.mood = mood
self.num_agents = num_agents
self.is_random = is_random
self.agent_names = agent_names
self.story_setting_event = story_setting_event
def generate_agent_character(self, agent_num, story: str, mood: str, **kwargs):
"""Generate a Character Agent."""
name = kwargs["name"]
age = kwargs["age"]
sex = kwargs["sex"]
race = kwargs["race"]
st.markdown(f":blue[A wild **_{name}_** appeared.]")
icon_prompt = (f"{age} years old {sex} {race} named {name} from {story}, portrait, 16-bit super nes")
response = openai.Image.create(
prompt=icon_prompt,
n=1,
size="256x256",
response_format="b64_json"
)
binary_data = base64.b64decode(response["data"][0]["b64_json"])
icon_file = f"images/agent{str(agent_num)}.png"
with open(icon_file, "wb") as file:
file.write(binary_data)
gen_agent = WhatIfGenerativeAgent(
icon=icon_file,
name=name,
age=kwargs["age"],
race=kwargs["race"],
sex=kwargs["sex"],
story=story,
traits=kwargs["traits"],
status=kwargs["status"],
memory=GenerativeAgentMemory(llm=ChatOpenAI(), memory_retriever=create_new_memory_retriever()),
llm=ChatOpenAI(model_name=os.environ['OPENAI_API_MODEL'], temperature=float(os.environ['OPENAI_TEMPERATURE'])),
daily_summaries=[str(x) for x in kwargs["daily_summaries"]],
)
portrait_area, stats_area = st.columns([1,3])
with portrait_area:
st.image(icon_file)
with stats_area:
st.markdown(f"Sex: :blue[{gen_agent.sex}]")
st.markdown(f"Race: :blue[{gen_agent.race}]")
st.markdown(f"Status: :blue[{gen_agent.status}]")
st.markdown(f"traits: :blue[{gen_agent.traits}]")
for memory in [str(x) for x in kwargs["memories"]]:
gen_agent.memory.add_memory(memory)
summary_description = gen_agent.get_summary_description(force_refresh=True)
st.markdown(f"Summary: :green[{summary_description}]")
return gen_agent
def generate_random_character(self, story: str, mood: str, agent_names: list):
""" Generate random character with properties """
character_exclusion = f" that is not in [{', '.join(agent_names)}]" if agent_names else ""
prompt = (
f"Generate a random {story} character {character_exclusion}. "
"Based on the character possessing some basic memories and events, "
"provide the following properties in JSON format:\n"
"name: Name of the character\n"
"race: Race of the character\n"
"sex: The character's sex\n"
"age: The character's age\n"
"traits: 3 to 8 traits that describe the character (comma-separated)\n"
f"status: The character's current status in the perspective of {story}\n"
f"daily_summaries: 5 to 10 {mood}-themed daily activities that the character completed today (array of strings)\n"
f"memories: 5 to 10 {mood}-themed memories from the character's life (array of strings)\n"
)
return json.loads(
ChatOpenAI(model_name=os.environ['OPENAI_API_MODEL'], temperature=1.0)(
[HumanMessage(content=prompt)]
).content
)
def generate_random_props(self, story: str, mood: str, name: str):
""" Generate random character properties """
prompt = (
f"Based on the {story} character {name} possessing some basic memories and events, "
"provide the following properties in JSON format:\n"
"name: Name of the character\n"
"race: Race of the character\n"
"sex: The character's sex\n"
"age: The character's age\n"
"traits: 3 to 8 traits that describe the character (comma-separated)\n"
f"status: The character's current status in the perspective of {story}\n"
f"daily_summaries: 5 to 10 {mood}-themed daily activities that the character completed today (array of strings)\n"
f"memories: 5 to 10 {mood}-themed memories from the character's life (array of strings)\n"
)
return json.loads(
ChatOpenAI(model_name=os.environ['OPENAI_API_MODEL'], temperature=1.0)(
[HumanMessage(content=prompt)]
).content
)
def generate_character_system_message(self, story_description, character_name, character_description):
"""Generate System Message for Generative Agents"""
return (SystemMessage(content=(
f"""{story_description}
Your name is {character_name}.
Your character description is as follows: {character_description}.
You will speak what specific action you are taking next and try not to repeat any previous actions
Speak in the first person from the perspective of {character_name}, in the tone that {character_name} would speak.
Do not change roles!
Do not speak from the perspective of anyone else.
Remember you are {character_name}.
Stop speaking the moment you finish speaking from your perspective.
Never forget to keep your response to {word_limit} words!
Do not add anything else.
""")
))
def generate_storyteller_system_message(self, story_description, storyteller_name):
"""Generate the System Message for Storyteller"""
return (SystemMessage(content=(
f"""{story_description}
You are the storyteller, {storyteller_name}.
Taking the character's actions into consideration you will narrate and explain what happens when they take those actions then narrate in details what must be done next.
Narrate in a creative and captivating manner. Do not repeat anything that has already happened.
Do not change roles!
Do not speak from the perspective of anyone else.
Remember you are the storyteller, {storyteller_name}.
Stop speaking the moment you finish speaking from your perspective.
Never forget to keep your response to 50 words!
Do not add anything else.
""")
))
def generate_agents(self, story, mood, num_agents, agent_names, is_random):
"""Generate Agents"""
agents = []
for i in range(num_agents):
with st.spinner(f"Generating {story} Character Agent"):
kwargs = self.generate_random_character(story, mood, agent_names) if is_random else self.generate_random_props(story, mood, agent_names[i])
agent = self.generate_agent_character(i+1, story=story, mood=mood, **kwargs)
agents.append(agent)
agent_names.append(agent.name)
return agents
def define_story_details(self, story, agent_names, story_setting_event):
"""Define Story Details with Main Objective"""
story_description = f"""This is based on {story}.
The characters are: {', '.join(agent_names)}.
Here is the story setting: {story_setting_event}"""
story_specifier_prompt = [
SystemMessage(content="You can make tasks more specific."),
HumanMessage(content=
f"""{story_description}
Narrate a creative and thrilling background story that has never been told and sets the stage for the main objective of the story.
The main objective must require series of tasks the characters must complete.
If the main objective is item or person, narrate a creative and cool name for them.
Narrate specific detail what is the next step to embark on this journey.
No actions have been taken yet by {', '.join(agent_names)}, only provide the introduction and background of the story.
Please reply with the specified quest in 100 words or less.
Speak directly to the characters: {', '.join(agent_names)}.
Do not add anything else."""
)
]
with st.spinner(f"Generating Story"):
specified_story = ChatOpenAI(model_name=os.environ['OPENAI_API_MODEL'], temperature=1.0)(story_specifier_prompt).content
story_main_objective_prompt = [
SystemMessage(content="Identify main objective"),
HumanMessage(content=
f"""Here is the story: {specified_story}
What is the main objective of this story {', '.join(agent_names)}? Narrate the response in one line, do not add anything else."""
)
]
with st.spinner(f"Extracting Objective"):
story_main_objective = ChatOpenAI(model_name=os.environ['OPENAI_API_MODEL'], temperature=0.0)(story_main_objective_prompt).content
return story_description, specified_story, story_main_objective
def initialize_storyteller_and_agents(self, agent_names, story_description, specified_story, story_main_objective, agents):
"""Initialize Storyteller and Agents"""
storyteller = StorytellerAgent(
name=storyteller_name,
llm=ChatOpenAI(model_name=os.environ['OPENAI_API_MODEL'], temperature=0.5),
system_message=self.generate_storyteller_system_message(specified_story, storyteller_name),
summary_history=specified_story,
story_main_objective=story_main_objective
)
for agent in agents:
agent.setup_agent(
self.generate_character_system_message(story_description, agent.name, agent.get_summary_description()),
specified_story
)
return storyteller, agents
def generate_story_finale(self, story_main_objective, final_observation):
"""Generate a Cliffhanger Finale"""
story_finale_prompt = [
SystemMessage(content="Make the finale a cliffhanger"),
HumanMessage(content=
f"""
Story Objective: {story_main_objective}
Final Observation: {final_observation}
Based on this "Story Objective" and "Final Observation", narrate a grand finale cliffhanger ending.
Be creative and spectacular!
"""
)
]
story_finale = ChatOpenAI(model_name=os.environ['OPENAI_API_MODEL'], temperature=1.0)(story_finale_prompt).content
return story_finale
def run_story(self, storyteller: StorytellerAgent, agents: List[WhatIfGenerativeAgent], observation: str) -> Tuple[str, int]:
"""Runs the Story"""
is_objective_complete = False
turns = 0
prev_agent = None
while True:
random.shuffle(agents)
for chosen_agent in agents:
while chosen_agent == prev_agent:
chosen_agent = random.choice(agents)
prev_agent = chosen_agent
with st.spinner(f"{chosen_agent.name} is reacting"):
reaction = chosen_agent.generate_reaction(observation)
with Message(chosen_agent.name, chosen_agent.icon, layout='agent') as m:
m.write(f"{reaction}")
chosen_agent.narrate(reaction)
with st.spinner(f"Agents are observing"):
for recipient in agents + [storyteller]:
recipient.receive(chosen_agent.name, reaction)
with st.spinner(f"{storyteller.name} is thinking"):
observation, is_objective_complete = storyteller.send()
turns += 1
if is_objective_complete:
return observation, turns
with Message(storyteller.name, storyteller.icon, layout='storyteller') as m:
m.write(f":green[{observation}]")
storyteller.narrate(observation)
def run_simulation(self):
self.agents = self.generate_agents(self.story, self.mood, self.num_agents, self.agent_names, self.is_random)
story_description, specified_story, story_main_objective = self.define_story_details(self.story, self.agent_names, self.story_setting_event)
self.storyteller, self.agents = self.initialize_storyteller_and_agents(self.agent_names, story_description, specified_story, story_main_objective, self.agents)
with Message(self.storyteller.name, self.storyteller.icon, layout='storyteller') as m:
m.write(f":green[{specified_story}]")
self.storyteller.narrate(specified_story)
final_observation, turns = self.run_story(self.storyteller, self.agents, specified_story)
story_finale = self.generate_story_finale(story_main_objective, final_observation)
with Message(self.storyteller.name, self.storyteller.icon, layout='storyteller') as m:
m.write(f":green[{story_finale}]")
self.storyteller.narrate(story_finale)
st.success(f"Story Objective completed in {turns} turns!", icon="✅")
def relevance_score_fn(score: float) -> float:
"""Return a similarity score on a scale [0, 1]."""
# This will differ depending on a few things:
# - the distance / similarity metric used by the VectorStore
# - the scale of your embeddings (OpenAI's are unit norm. Many others are not!)
# This function converts the euclidean norm of normalized embeddings
# (0 is most similar, sqrt(2) most dissimilar)
# to a similarity function (0 to 1)
return 1.0 - score / math.sqrt(2)
def create_new_memory_retriever():
"""Create a new vector store retriever unique to the agent."""
# Define your embedding model
embeddings_model = OpenAIEmbeddings()
# Initialize the vectorstore as empty
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}, relevance_score_fn=relevance_score_fn)
return TimeWeightedVectorStoreRetriever(vectorstore=vectorstore, other_score_keys=["importance"], k=15)
def get_summary_content(summary_history, name, message) -> str:
"""Summarize What has happened thus far"""
summarizer_prompt = [
SystemMessage(content="Make the summary concise."),
HumanMessage(content=
f"""Summarize the following into a concise summary with key details including the actions that {name} has taken and the results of that action
{summary_history}
{name} reacts {message}
"""
)
]
return ChatOpenAI(temperature=0.0)(summarizer_prompt).content
storyteller_name = "The Storyteller"
word_limit = 35
def main():
st.set_page_config(
initial_sidebar_state="expanded",
page_title="WhatIfGPT",
layout="centered",
)
with st.sidebar:
openai_api_key = st.text_input("Your OpenAI API KEY", type="password")
openai_api_model = st.selectbox("Model name", options=["gpt-3.5-turbo", "gpt-4"])
openai_temperature = st.slider(
label="Temperature",
min_value=0.0,
max_value=1.0,
step=0.1,
value=0.2,
)
eleven_api_key = st.text_input("Your Eleven Labs API Key", type="password")
os.environ['OPENAI_API_KEY'] = openai_api_key
os.environ['OPENAI_API_MODEL'] = openai_api_model
os.environ['OPENAI_TEMPERATURE'] = str(openai_temperature)
os.environ['ELEVEN_API_KEY'] = eleven_api_key
st.title("WhatIfGPT")
story = st.text_input("Enter the theme of the story", "Random Story")
mood = "positive"
num_agents = st.slider(
label="Number of Agents",
min_value=2,
max_value=4,
step=1,
value=2,
)
is_random = st.checkbox("Do you want the event and agents to be created randomly?", value=True)
agent_names = []
story_setting_event = f"random entertaining story with a mission to complete in the theme of {story}"
if not is_random:
for i in range(num_agents):
name = st.text_input(f"Enter Character {i + 1} name: ", "")
agent_names.append(name)
user_story_setting_event = st.text_input("Enter the story to have the agents participate in (or just leave blank for random): ")
if user_story_setting_event:
story_setting_event = user_story_setting_event
button = st.button("Run")
if button:
try:
whatifsim = WhatIfStorySimulator(
story,
mood,
num_agents,
is_random,
agent_names,
story_setting_event
)
whatifsim.run_simulation()
except Exception as e:
st.error(e)
if __name__ == "__main__":
main()