-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchair_stage_two_retrieval.py
429 lines (328 loc) · 16.4 KB
/
chair_stage_two_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from obiwan.new_models import CBM, FuseCBM, MultiFuse, LambdaFuseCBM, Plain
from obiwan.datasets.cub import get_cub_dataloaders
from obiwan.datasets.awa import get_awa_dataloaders
from obiwan.utils import recall
import evaluate as ev
import intervene as iv
from torchmetrics.classification import Accuracy
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.models.resnet import resnet18
from torchmetrics.aggregation import MeanMetric
import os
import random
from dotenv import load_dotenv
import json
load_dotenv()
import wandb #noqa
try:
from rich.tqdm import tqdm
except ImportError:
from tqdm import tqdm
def get_concepts(model, dataloader, device) -> torch.Tensor:
"""Get the concept embeddings for the entire dataset
Args:
model (CBM): CBM or FuseCBM model
dataloader (DataLoader): DataLoader object
device (str): Device to run the model on
Returns:
torch.Tensor: Concept embeddings for the entire dataset
"""
model.to(device)
model.eval()
concepts = []
for batch in tqdm(dataloader):
if len(batch) == 2:
imgs, (labels, attrs) = batch
else:
imgs, attrs, labels = batch
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
with torch.no_grad():
concept, _ = model(imgs)
# concept, _, _ = model(imgs)
concept = torch.cat(concept, dim=1)
concepts.append(concept)
concepts = torch.cat(concepts, dim=0)
return concepts
def collect_embeddings_with_probs(model: FuseCBM, dataloader, device, values):
"""Collect embeddings for the entire dataset with different probabilities of random intervention
Args:
model (FuseCBM): FuseCBM model
dataloader (DataLoader): DataLoader object
device (str): Device to run the model on
values (torch.Tensor): Concept values for intervention (95th percentile)
Returns:
List[torch.Tensor]: List of embeddings for different probabilities
"""
model.eval()
model.to(device)
probs = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 ,0.7, 0.8, 0.9, 1.0]
embeddings_list = []
labels_list = []
with torch.no_grad():
for prob in probs:
prob_embeddings = []
prob_labels = []
for batch in tqdm(dataloader):
if len(batch) == 2:
imgs, (labels, attrs) = batch
else:
imgs, attrs, labels = batch
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
if values is None:
embeddings = model.get_fused_embedding(imgs, return_concepts=False, return_extra_dim=False)
else:
embeddings = model.get_fused_embedding_with_prob(imgs, attrs, return_concepts=False, intervention_values=values, prob_correct=prob)
# embeddings = model.get_fused_embedding_with_percentage_correction(imgs, attrs, return_concepts=False, return_extra_dim=False, intervention_values=values, percentage_correction=prob)
embeddings = F.normalize(embeddings, dim=1)
prob_embeddings.append(embeddings)
prob_labels.append(labels)
embeddings_list.append(torch.cat(prob_embeddings, dim=0))
labels_list.append(torch.cat(prob_labels, dim=0))
return embeddings_list, labels_list
def train_sequential(model, train_loader, val_loader, num_concepts, device, epochs, lr, weight_decay, num_classes):
"""Train concept bottleneck and classification sequentially
Args:
model (FuseCBM): FuseCBM model
train_loader (DataLoader): DataLoader object for training
val_loader (DataLoader): DataLoader object for validation
num_concepts (int): Number of concepts
device (str): Device to run the model on
epochs (int): Number of epochs
lr (float): Learning rate
weight_decay (float): Weight decay
num_classes (int): Number of classes
"""
optimizer = torch.optim.SGD(model.get_concept_parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
# Concept Bottleneck Training
for epoch in tqdm(range(epochs)):
model.set_concepts_to_train()
epoch_loss_classes = MeanMetric()
epoch_loss_classes.to(device)
for data in tqdm(train_loader):
if len(data) == 2:
imgs, (labels, attrs) = data
else:
imgs, attrs, labels = data
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
concepts, pred_classes = model(imgs)
concepts_loss = 0
criterion = torch.nn.CrossEntropyLoss()
for i in range(num_concepts):
ind_concept_loss = criterion(concepts[i].squeeze(), attrs[:,i].squeeze().float())
concepts_loss = concepts_loss + ind_concept_loss
concepts_loss = concepts_loss / num_concepts
loss = concepts_loss
loss.backward()
optimizer.step()
epoch_loss_classes.update(loss)
wandb.log({'concept_loss': loss})
lr_scheduler.step()
print(f"Epoch Class Loss: {epoch_loss_classes.compute()}")
if (epoch+1) % 10 == 0:
model.eval()
recall_list = ev.evaluate_recall(model, val_loader, device, intervene=False, pre_concept=False)
print(f'Epoch Recall@1: {recall_list[0]} - Epoch Recall@5: {recall_list[1]} - Epoch Recall@10: {recall_list[2]}')
wandb.log({'Epoch recall@1': recall_list[0], 'Epoch recall@5': recall_list[1], 'Epoch recall@10': recall_list[2]})
model.set_concepts_to_train()
# Classification Training
model.set_classes_to_train()
optimizer = torch.optim.SGD(model.get_class_parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
for epoch in tqdm(range(epochs)):
model.set_classes_to_train()
epoch_loss_classes = MeanMetric()
epoch_loss_classes.to(device)
for data in tqdm(train_loader):
if len(data) == 2:
imgs, (labels, attrs) = data
else:
imgs, attrs, labels = data
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
concepts, pred_classes = model(imgs)
class_loss = torch.nn.functional.cross_entropy(pred_classes, labels.long().squeeze())
loss = class_loss
loss.backward()
optimizer.step()
epoch_loss_classes.update(loss)
wandb.log({'class_loss': loss})
lr_scheduler.step()
print(f"Epoch Class Loss: {epoch_loss_classes.compute()}")
if (epoch+1) % 10 == 0:
model.eval()
recall_list = ev.evaluate_recall(model, val_loader, device, intervene=False, pre_concept=False)
print(f'Epoch Recall@1: {recall_list[0]} - Epoch Recall@5: {recall_list[1]} - Epoch Recall@10: {recall_list[2]}')
wandb.log({'Epoch recall@1': recall_list[0], 'Epoch recall@5': recall_list[1], 'Epoch recall@10': recall_list[2]})
model.set_classes_to_train()
def train_joint(model, train_loader, val_loader, num_concepts, device, epochs, lr, weight_decay, num_classes):
"""Train concept bottleneck and classification jointly
Args:
model (FuseCBM): FuseCBM model
train_loader (DataLoader): DataLoader object for training
val_loader (DataLoader): DataLoader object for validation
num_concepts (int): Number of concepts
device (str): Device to run the model on
epochs (int): Number of epochs
lr (float): Learning rate
weight_decay (float): Weight decay
num_classes (int): Number of classes
"""
model.train()
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
for epoch in tqdm(range(epochs)):
model.train()
epoch_loss_classes = MeanMetric()
epoch_loss_classes.to(device)
for data in tqdm(train_loader):
if len(data) == 2:
imgs, (labels, attrs) = data
else:
imgs, attrs, labels = data
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
concepts, pred_classes = model(imgs)
class_loss = torch.nn.functional.cross_entropy(pred_classes, labels.long().squeeze())
concepts_loss = 0
criterion = torch.nn.CrossEntropyLoss()
for i in range(num_concepts):
ind_concept_loss = criterion(concepts[i].squeeze(), attrs[:,i].squeeze().float())
concepts_loss = concepts_loss + ind_concept_loss
concepts_loss = concepts_loss / num_concepts
loss = class_loss + concepts_loss
loss.backward()
optimizer.step()
epoch_loss_classes.update(loss)
wandb.log({'class_loss': loss})
lr_scheduler.step()
print(f"Epoch Class Loss: {epoch_loss_classes.compute()}")
if (epoch+1) % 10 == 0:
model.eval()
recall_list = ev.evaluate_recall(model, val_loader, device, intervene=False, pre_concept=False)
print(f'Epoch Recall@1: {recall_list[0]} - Epoch Recall@5: {recall_list[1]} - Epoch Recall@10: {recall_list[2]}')
wandb.log({'Epoch recall@1': recall_list[0], 'Epoch recall@5': recall_list[1], 'Epoch recall@10': recall_list[2]})
model.train()
@hydra.main(config_path="configs", config_name="vanilla", version_base="1.1")
def train(cfg: DictConfig) -> None:
wandb.init(project=os.environ.get('WANDB_PROJECT', 'CHAIR'), entity=os.environ.get('WANDB_ENTITY'), config=OmegaConf.to_container(
cfg, resolve=True, throw_on_missing=True
))
print(f"Dataset: {cfg.dataset} Seed: {cfg.seed} Mode: {cfg.train_mode}")
seed = cfg.get('seed', random.randint(0, 10000))
torch.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if cfg.dataset == 'cub':
train_loader, val_loader = get_cub_dataloaders("/nfs/turbo/coe-ecbk/vballoli/ConceptRetrieval/cem/cem/data/CUB200/class_attr_data_10/", cfg.batch_size, cfg.num_workers)
num_classes = 100
num_concepts = 112
elif cfg.dataset == 'awa':
train_loader, val_loader = get_awa_dataloaders(cfg.batch_size, cfg.num_workers)
num_classes = 50
num_concepts = 45
else:
raise ValueError(f"Unknown dataset: {cfg.dataset}")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('mps') if torch.backends.mps.is_available() else device
backbone = resnet18(pretrained=cfg.pretrained)
model = FuseCBM(backbone, num_classes, num_concepts, 0.2, 0, 'relu')
model.to(device)
exp_name = f"fuse_stage_two_retrieval_{cfg.dataset}_{cfg.seed}_{cfg.train_mode}"
results_dir = "new_results"
os.makedirs(results_dir, exist_ok=True)
results_exp_dir = os.path.join(results_dir, exp_name)
os.makedirs(results_exp_dir, exist_ok=True)
# Concept Bottleneck Training
if cfg.train_mode == 'sequential':
train_sequential(model, train_loader, val_loader, num_concepts, device, cfg.epochs, cfg.lr, cfg.weight_decay, num_classes)
elif cfg.train_mode == 'joint':
train_joint(model, train_loader, val_loader, num_concepts, device, cfg.epochs, cfg.lr, cfg.weight_decay, num_classes)
else:
raise ValueError(f"Unknown training mode: {cfg.train_mode}")
# CHAIR training - re-initialize classification layer and train the projection layer
model.reset_classification_2()
class_parameters = model.get_class_parameters()
optimizer = torch.optim.SGD(class_parameters, lr=1e-3, momentum=0.9, weight_decay=cfg.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=cfg.step_size, gamma=cfg.gamma)
model.to(device)
concepts = iv.get_concepts(model, train_loader, device).cpu().numpy()
concepts_max = np.percentile(concepts, 95, axis=0).astype(np.float32)
concepts_max = torch.from_numpy(concepts_max).to(device)
for epoch in tqdm(range(cfg.epochs)):
epoch_loss_classes = MeanMetric()
epoch_loss_classes.to(device)
class_accuracy = Accuracy(task='multiclass', num_classes=num_classes)
class_accuracy.to(device)
for data in tqdm(train_loader):
if len(data) == 2:
imgs, (labels, attrs) = data
else:
imgs, attrs, labels = data
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
prob = torch.rand(1).item()
# Fused embedding - merging previous embedding and edits from the projection layer
fused = model.get_fused_embedding_with_prob(imgs, attrs, False, False, concepts_max, prob)
classes = model.get_class_from_embedding(fused)
loss = torch.nn.functional.cross_entropy(classes, labels.long().squeeze())
loss.backward()
optimizer.step()
epoch_loss_classes.update(loss)
wandb.log({'class_loss': loss})
print(f"Epoch Class Loss: {epoch_loss_classes.compute()}")
wandb.log({"epoch_class_loss": epoch_loss_classes.compute()})
lr_scheduler.step()
for imgs, attrs, labels in tqdm(train_loader):
imgs = imgs.to(device)
attrs = attrs.to(device)
labels = labels.to(device)
concepts, classes = model(imgs)
class_accuracy.update(classes, labels.long().squeeze())
train_class_accuracy = class_accuracy.compute()
wandb.log({'new_train_class_accuracy': train_class_accuracy})
recall_list = ev.evaluate_recall(model, val_loader, device)
print(f'Epoch Recall@1: {recall_list[0]} - Epoch Recall@5: {recall_list[1]} - Epoch Recall@10: {recall_list[2]}')
wandb.log({'Epoch recall@1': recall_list[0], 'Epoch recall@5': recall_list[1], 'Epoch recall@10': recall_list[2]})
torch.save(model.state_dict(), os.path.join(results_exp_dir, 'model.pth'))
recall_list = ev.evaluate_recall(model, val_loader, device, intervene=False, pre_concept=False)
# with open(os.path.join(results_exp_dir, 'results.json'), 'w') as f:
# json.dump({'recall@1': recall_list[0], 'recall@5': recall_list[1], 'recall@10': recall_list[2]}, f)
results = {'recall@1': recall_list[0], 'recall@5': recall_list[1], 'recall@10': recall_list[2]}
print(f'Recall@1: {recall_list[0]} - Recall@5: {recall_list[1]} - Recall@10: {recall_list[2]}')
concepts = get_concepts(model, train_loader, device).cpu().numpy()
# get 95% and 5% quantiles for each concept for intervention
# concept_min = torch.quantile(concepts, 0.05, dim=0)
# concept_max = torch.quantile(concepts, 0.95, dim=0)
concepts_min = np.percentile(concepts, 5, axis=0).astype(np.float32)
concepts_max = np.percentile(concepts, 95, axis=0).astype(np.float32)
prob_embs, prob_labels = collect_embeddings_with_probs(model, val_loader, device, torch.from_numpy(concepts_max).to(device).squeeze())
results['prob_results'] = {}
for i in range(len(prob_embs)):
for j in range(len(prob_embs)):
print(f"Prob: {i} vs Prob: {j}")
recall_list, num_rec = recall(prob_embs[i], prob_labels[i], rank=[1,5,10], gallery_features=prob_embs[j], gallery_labels=prob_labels[j], ret_num=True)
print(f"{recall_list}\t{num_rec}")
results['prob_results'][i,j] = {'recall': recall_list, 'num_rec': num_rec}
with open(os.path.join(results_exp_dir, 'results.json'), 'w') as f:
json.dump(results, f)
if __name__ == '__main__':
train()