-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcollect_demos_teleop_franka.py
451 lines (378 loc) · 16.1 KB
/
collect_demos_teleop_franka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import time
import argparse
import wandb
import numpy as np
import yaml
import os
from utils import create_env
import os
from os import listdir
from os.path import isfile, join
from utils import preprocess_pcd_from_canon, create_panda_urdf
def run(
**cfg):
if cfg["from_disk"]:
cfg["render_images"] = False
env_name = cfg["env_name"]
demo_folder = cfg["demo_folder"]
num_demos = cfg["num_demos"]
max_path_length = cfg["max_path_length"]
offset = cfg["offset"]
save_all = cfg["save_all"]
env, _ = create_env(cfg, cfg['display'], seed=cfg['seed'])
os.makedirs(f"demos/{env_name+demo_folder}", exist_ok=True)
# import IPython
# IPython.embed()
# while simulation_app.is_running():
# env.base_env._env.sim.step(True)
# simulation_app.close()
collect_demos(env, num_demos, env_name, max_path_length, offset, save_all, demo_folder, cfg=cfg)
def env_distance(env, state, goal):
obs = env.observation(state)
return env.compute_shaped_distance(obs, goal)
def create_video(images, video_filename):
images = np.array(images).astype(np.uint8)
images = images.transpose(0,3,1,2)
wandb.log({"demos_video_trajectories":wandb.Video(images, fps=10)})
FRANKA_MAP_ACTION = {
'\x1b[A': 0,# FRONT
'\x1b[B': 1,# BACK
'\x1b[D': 2,# LEFT
'\x1b[C': 3, # RIGHT
'U': 4,# UP
'J': 5,# DOWN
'1': 6,# TILT 1
'2': 7,# TILT 2
'3': 8,# TILT 3
'4': 9,# TILT 4
'5': 10,# TILT 5
'6': 11, # TILT 6
'7': 12,# TILT 7
'8': 13,# TILT 7
'O': 14,# OPEN GRIPPER
'C': 15,# CLOSE GRIPPER
'82': 0,# FRONT
'84': 1,# BACK
'81': 2,# LEFT
'83': 3, # RIGHT
'117': 4,# UP
'106': 5,# DOWN
'49': 6,# TILT 1
'50': 7,# TILT 2
'51': 8,# TILT 3
'52': 9,# TILT 4
'53': 10,# TILT 5
'54': 11, # TILT 6
# '55': 12,# TILT 7
# '56': 13,# TILT 7
'99': 13,# CLOSE GRIPPER
'111': 12,# OPEN GRIPPER
'100': -1,# DISCARD
'115': -2,# SAVE
}
import cv2
def get_data_foldername(cfg):
filename = cfg["datafilename"]
if "datafolder" in cfg:
datafolder = cfg["datafolder"]
else:
datafolder = "/data/pulkitag/misc/marcel/data/"
folder_name = f"{datafolder}/{filename}" #os.path.join(cfg["main_folder"],cfg["filename"])
return folder_name
def get_num_demos(cfg):
folder_name = get_data_foldername(cfg)
onlyfiles = [f for f in listdir(folder_name) if isfile(join(folder_name, f))]
num_demos_disk = len(onlyfiles)
return num_demos_disk//3
def collect_demos(env, num_demos, env_name, max_path_length, offset=0, save_all=False, demo_folder="", cfg=None):
i = offset
urdf = create_panda_urdf(cfg)
print(env_name+demo_folder)
state = env.reset()
state = env.step(np.array([0]))
joints = []
# actions_real = np.load("realworlddemos/demo_0_actions.npy")
# joints_real = np.load("realworlddemos/demo_0_joints.npy")
image = env.render_image(sensors=["rgb"])[0][0]
if cfg["from_disk"]:
num_demos_disk = get_num_demos(cfg)
# import IPython
# IPython.embed()
# while True:
# env.step(np.array([0]))
global franka_ck_action # ck -- carb keyboard
franka_ck_action = None
if cfg["display"]:
print(f'Using carb keyboard interface for actions')
import omni.appwindow
import carb.input
if cfg["keyboard_type"] == "anthony":
FRANKA_MAP_ACTION_CARB = {
carb.input.KeyboardInput.S : 0,# FRONT
carb.input.KeyboardInput.W : 1,# BACK
carb.input.KeyboardInput.D : 2,# LEFT
carb.input.KeyboardInput.A : 3,# RIGHT
carb.input.KeyboardInput.E : 4,# UP
carb.input.KeyboardInput.Q : 5,# DOWN
carb.input.KeyboardInput.J : 6,# TILT X
carb.input.KeyboardInput.L : 7,# TILT X
carb.input.KeyboardInput.I : 8,# TILT Y
carb.input.KeyboardInput.K : 9,# TILT Y
carb.input.KeyboardInput.U : 10,# TILT Z
carb.input.KeyboardInput.O : 11,# TILT Z
carb.input.KeyboardInput.V : 12,# OPEN
carb.input.KeyboardInput.C : 13,# CLOSE
carb.input.KeyboardInput.KEY_1 : -1,# DISCARD
carb.input.KeyboardInput.KEY_2 : -2,# SAVE
}
else:
# FRANKA_MAP_ACTION = {
# '\x1b[A': 0,# FRONT
# '\x1b[B': 1,# BACK
# '\x1b[D': 2,# LEFT
# '\x1b[C': 3, # RIGHT
# 'U': 4,# UP
# 'J': 5,# DOWN
# '1': 6,# TILT 1
# '2': 7,# TILT 2
# '3': 8,# TILT 3
# '4': 9,# TILT 4
# '5': 10,# TILT 5
# '6': 11, # TILT 6
# '7': 12,# TILT 7
# '8': 13,# TILT 7
# 'O': 14,# OPEN GRIPPER
# 'C': 15,# CLOSE GRIPPER
# '82': 0,# FRONT
# '84': 1,# BACK
# '81': 2,# LEFT
# '83': 3, # RIGHT
# '117': 4,# UP
# '106': 5,# DOWN
# '49': 6,# TILT 1
# '50': 7,# TILT 2
# '51': 8,# TILT 3
# '52': 9,# TILT 4
# '53': 10,# TILT 5
# '54': 11, # TILT 6
# # '55': 12,# TILT 7
# # '56': 13,# TILT 7
# '99': 13,# CLOSE GRIPPER
# '111': 12,# OPEN GRIPPER
# '100': -1,# DISCARD
# '115': -2,# SAVE
# }
FRANKA_MAP_ACTION_CARB = {
carb.input.KeyboardInput.UP : 0,# FRONT
carb.input.KeyboardInput.DOWN : 1,# BACK
carb.input.KeyboardInput.LEFT : 2,# LEFT
carb.input.KeyboardInput.RIGHT : 3,# RIGHT
carb.input.KeyboardInput.U : 4,# UP
carb.input.KeyboardInput.J : 5,# DOWN
carb.input.KeyboardInput.KEY_1 : 6,# TILT X
carb.input.KeyboardInput.KEY_2 : 7,# TILT X
carb.input.KeyboardInput.KEY_3 : 8,# TILT Y
carb.input.KeyboardInput.KEY_4 : 9,# TILT Y
carb.input.KeyboardInput.KEY_5 : 10,# TILT Z
carb.input.KeyboardInput.KEY_6 : 11,# TILT Z
carb.input.KeyboardInput.O : 12,# OPEN
carb.input.KeyboardInput.C : 13,# CLOSE
carb.input.KeyboardInput.D : -1,# DISCARD
carb.input.KeyboardInput.S : -2,# SAVE
}
def on_kb_input(e):
global franka_ck_action
if e.type == carb.input.KeyboardEventType.KEY_RELEASE:
if e.input in FRANKA_MAP_ACTION_CARB.keys():
franka_ck_action = FRANKA_MAP_ACTION_CARB[e.input]
else:
franka_ck_action = None
print(f'\n\nGot {e.input}, output franka action: {franka_ck_action}\n\n')
app_window = omni.appwindow.get_default_app_window()
kb = app_window.get_keyboard()
carb_input = carb.input.acquire_input_interface()
_ = carb_input.subscribe_to_keyboard_events(kb, on_kb_input)
def get_action_simple(*, video, **kwargs):
image = env.render_image(sensors=["rgb"])[0][0]
video.append(image)
image = image[:,:,::-1]
cv2.imshow("Window", image)
key = cv2.waitKey(10250)
cv2.destroyAllWindows()
key = str(key)
print(key)
action_raw = key
while action_raw not in FRANKA_MAP_ACTION:
action_raw = "3"
# action_raw = input("Action:")
print("action_raw", action_raw)
action = FRANKA_MAP_ACTION[action_raw]
return action
def get_action_carb_keyboard(noop_flag=None, *args, **kwargs):
global franka_ck_action
if franka_ck_action is None:
# print(f'[Debug] no-op step')
return noop_flag
else:
return franka_ck_action
get_action = get_action_carb_keyboard if cfg["carb_keyboard"] else get_action_simple
while i < num_demos + offset:
actions = []
states = []
points = []
joints = []
state = env.reset()
joint = env.base_env._env.get_robot_joints()
pcd = env.render_image(sensors=["distance_to_image_plane"])[1]
pcd_processed_points = preprocess_pcd_from_canon(pcd, joint, urdf, urdf.canonical_link_pcds, cfg)
# import open3d as o3d
# pcd3 = o3d.geometry.PointCloud()
# pcd3.points = o3d.utility.Vector3dVector(pcd[0][0])
# o3d.visualization.draw_geometries([pcd3])
# import open3d as o3d
# pcd3 = o3d.geometry.PointCloud()
# pcd3.points = o3d.utility.Vector3dVector(pcd_processed_points[0])
# o3d.visualization.draw_geometries([pcd3])
video = []
goal = env.extract_goal(env.sample_goal())
print(env.action_space)
print("Max path length", max_path_length)
if cfg["from_disk"]:
# read the number of demos in disk
# rollout actions
# collect demos
# distill policy
# train PPO
folder_name = get_data_foldername(cfg)
num_demos_disk = get_num_demos(cfg)
traj_idx = np.random.choice(num_demos_disk, 1)[0]
actions_disk = np.load(f"{folder_name}/actions_0_{traj_idx}.npy")[0]
t = 0
while True:
# print("state", t , state[:,-9:])
if t > max_path_length:
break
if cfg["from_disk"]:
if len(actions_disk) <= t:
action = -2
else:
action = actions_disk[t]
else:
action = get_action(video=video)
if action is None: # no-op flag, just allow the viewport to run forward
env.base_env._env.sim.render()
continue
# action = actions_real[t]
# real_joints = joints_real[t]
# sim_joints = env.base_env._env.get_robot_joints().detach().cpu().numpy()[0]
# print("Real robot joint", real_joints)
# print("Simulation robot joint", sim_joints)
if action < 0:
break
actions.append(action)
states.append(state[0])
points.append(pcd_processed_points[0])
joints.append(joint[0].detach().cpu().numpy())
state, _, done , info = env.step(np.array([action]))
joint = info["robot_joints"]
pcd = env.render_image(sensors=["rgb", "pointcloud"])[1]
pcd_processed_points = preprocess_pcd_from_canon(pcd, joint, urdf, urdf.canonical_link_pcds, cfg)
# import open3d as o3d
# pcd3 = o3d.geometry.PointCloud()
# pcd3.points = o3d.utility.Vector3dVector(pcd[0][0])
# o3d.visualization.draw_geometries([pcd3])
# import open3d as o3d
# pcd3 = o3d.geometry.PointCloud()
# pcd3.points = o3d.utility.Vector3dVector(pcd_processed_points[0])
# o3d.visualization.draw_geometries([pcd3])
franka_ck_action = None # ensure we reset the keyboard action
time.sleep(0.005)
t += 1 # only increment t when we actually take an action
print(t)
# print("Achieved pos", env.base_env._env._robot.get_ee_pose())
# print("Achieved pos", env.base_env._env.robot.data.root_state_w)
# if done :
# break
franka_ck_action = None # ensure we reset the keyboard action
if action == -2:
# final_dist_commanded = env_distance(env, states[-1], goal)
success = env.base_env._env.get_success().detach().cpu().numpy()
print("Succeeded", success)
if not cfg["from_disk"] and len(video): # todo(as) - add a video recording for the carb version as well
create_video(video, f"{env_name}")
# print("Final distance 1", final_dist_commanded)
# put actions states into npy file
actions = np.array([actions])
states = np.array([states])
points = np.array([points])
joints = np.array([joints])
# env.plot_trajectories([states], [goal])
print("Saving in", env_name+demo_folder)
np.save(f"demos/{env_name+demo_folder}/actions_0_{i}.npy", actions)
np.save(f"demos/{env_name+demo_folder}/states_0_{i}.npy", states)
np.save(f"demos/{env_name+demo_folder}/joints_0_{i}.npy", joints)
np.save(f"demos/{env_name+demo_folder}/pcd_points_0_{i}.npy", points)
i += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpu",type=int, default=0)
parser.add_argument("--seed",type=int, default=0)
parser.add_argument("--env_name", type=str, default='pointmass_empty')
parser.add_argument("--wandb_dir", type=str, default=None)
parser.add_argument("--epsilon_greedy_rollout",type=float, default=None)
parser.add_argument("--task_config", type=str, default=None)
parser.add_argument("--num_demos", type=int, default=10)
parser.add_argument("--max_path_length", type=int, default=None)
parser.add_argument("--noise", type=float, default=0)
parser.add_argument("--save_all", action="store_true", default=False)
parser.add_argument("--display", action="store_true", default=False)
parser.add_argument("--usd_name",type=str, default=None)
parser.add_argument("--usd_path",type=str, default=None)
parser.add_argument("--img_width", type=int, default=None)
parser.add_argument("--img_height", type=int, default=None)
parser.add_argument("--demo_folder", type=str, default="")
parser.add_argument("--not_randomize", action="store_true", default=False)
parser.add_argument("--from_disk", action="store_true", default=False)
parser.add_argument("--offset", type=int, default=0)
parser.add_argument("--extra_params", type=str, default=None)
parser.add_argument("--datafolder", type=str, default=None)
parser.add_argument("--datafilename", type=str, default=None)
parser.add_argument("--distractors",type=str, default="no_distractors")
parser.add_argument("--decimation",type=int, default=None)
parser.add_argument("--camera_params",type=str, default="teleop_toynbowl")
parser.add_argument("--carb_keyboard", action="store_true", default=False)
parser.add_argument("--keyboard_type", type=str, default="marcel")
args = parser.parse_args()
with open("config.yaml") as file:
config = yaml.safe_load(file)
params = config["common"]
params.update(config[args.env_name])
params.update({'randomize_pos':not args.not_randomize, 'randomize_rot':not args.not_randomize})
if args.extra_params is not None:
all_extra_params = args.extra_params.split(",")
for extra_param in all_extra_params:
params.update(config[extra_param])
data_folder_name = f"{args.env_name}_"
data_folder_name = data_folder_name+"teleop"
data_folder_name = data_folder_name + str(args.seed)
params.update(config["teleop_params"])
# force render_images for teleop_params to be False if we're using the carb keyboard interface
if args.carb_keyboard:
params["render_images"] = False
params.update(config[args.camera_params])
params.update(config[args.distractors])
for key in args.__dict__:
value = args.__dict__[key]
if value is not None:
params[key] = value
params["data_folder"] = data_folder_name
# del params["camera_rot"]
if "WANDB_DIR" in os.environ:
# use environment variable if possible
wandb_dir = os.environ["WANDB_DIR"]
else:
# otherwise use argparse
wandb_dir = params["wandb_dir"]
wandb.init(project=args.env_name+"teleop_demos", name=f"{args.env_name}_demos", config=params, dir=wandb_dir)
run(**params)
# dd_utils.launch(run, params, mode='local', instance_type='c4.xlarge')