-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
executable file
·324 lines (271 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os.path as osp
import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import argparse
import itertools
import shutil
from tqdm import tqdm
from data import Data
from utils import mkdir, flow2im, html_visualize, mask_visualization, tsdf_visualization
from model import ModelDSR
parser = argparse.ArgumentParser()
# exp args
parser.add_argument('--exp', type=str, help='name of exp')
parser.add_argument('--gpus', type=int, nargs='+', help='list of gpus to be used, separated by space')
parser.add_argument('--resume', default=None, type=str, help='path to model or exp, None means training from scratch')
# data args
parser.add_argument('--data_path', type=str, help='path to data')
parser.add_argument('--object_num', type=int, default=5, help='number of objects')
parser.add_argument('--seq_len', type=int, default=10, help='sequence length for training')
parser.add_argument('--batch', type=int, default=12, help='batch size per gpu')
parser.add_argument('--workers', type=int, default=4, help='number of workers per gpu')
parser.add_argument('--model_type', type=str, default='dsr', choices=['dsr', 'single', 'nowarp', 'gtwarp', '3dflow'])
parser.add_argument('--transform_type', type=str, default='se3euler', choices=['affine', 'se3euler', 'se3aa', 'se3spquat', 'se3quat'])
# loss args
parser.add_argument('--alpha_motion', type=float, default=1.0, help='weight of motino loss (MSE)')
parser.add_argument('--alpha_mask', type=float, default=5.0, help='weight of mask loss (BCE)')
# training args
parser.add_argument('--snapshot_freq', type=int, default=1, help='snapshot frequency')
parser.add_argument('--epoch', type=int, default=30, help='number of training eposhes')
parser.add_argument('--finetune', dest='finetune', action='store_true',
help='finetuning or training from scratch ==> different learning rate strategies')
# distributed training args
parser.add_argument('--seed', type=int, default=23333, help='random seed')
parser.add_argument('--dist_backend', type=str, default='nccl', help='distributed training backend')
parser.add_argument('--dist_url', type=str, default='tcp://127.0.0.1:2333', help='distributed training url')
def main():
args = parser.parse_args()
# loss types & loss_idx
loss_types = ['all', 'motion', 'mask']
loss_idx = {}
for i, loss_type in enumerate(loss_types):
loss_idx[loss_type] = i
print('==> loss types: ', loss_types)
args.loss_types = loss_types
args.loss_idx = loss_idx
# check sequence length
if args.model_type == 'single':
assert(args.seq_len == 1)
# resume
if args.resume is not None and not args.resume.endswith('.pth'):
args.resume = osp.join('exp', args.resume, 'models/latest.pth')
# dir & args
exp_dir = osp.join('exp', args.exp)
mkdir(exp_dir)
print('==> arguments parsed')
str_list = []
for key in vars(args):
print('[{0}] = {1}'.format(key, getattr(args, key)))
str_list.append('--{0}={1} \\'.format(key, getattr(args, key)))
args.model_dir = osp.join(exp_dir, 'models')
mkdir(args.model_dir)
args.visualization_dir = osp.join(exp_dir, 'visualization')
mkdir(args.visualization_dir)
mp.spawn(main_worker, nprocs=len(args.gpus), args=(len(args.gpus), args))
def main_worker(rank, world_size, args):
args.gpu = args.gpus[rank]
if rank == 0:
writer = SummaryWriter(osp.join('exp', args.exp))
print(f'==> Rank={rank}, Use GPU: {args.gpu} for training.')
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=world_size, rank=rank)
torch.cuda.set_device(args.gpu)
model = ModelDSR(
object_num=args.object_num,
transform_type=args.transform_type,
motion_type='se3' if args.model_type != '3dflow' else 'conv',
)
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), betas=(0.9, 0.95))
if args.resume is not None:
checkpoint = torch.load(args.resume, map_location=torch.device(f'cuda:{args.gpu}'))
model.load_state_dict(checkpoint['state_dict'])
print(f'==> rank={rank}, loaded checkpoint {args.resume}')
data, samplers, loaders = {}, {}, {}
for split in ['train', 'test']:
data[split] = Data(data_path=args.data_path, split=split, seq_len=args.seq_len)
samplers[split] = torch.utils.data.distributed.DistributedSampler(data[split])
loaders[split] = DataLoader(
dataset=data[split],
batch_size=args.batch,
num_workers=args.workers,
sampler=samplers[split],
pin_memory=False
)
print('==> dataset loaded: [size] = {0} + {1}'.format(len(data['train']), len(data['test'])))
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
for epoch in range(args.epoch):
samplers['train'].set_epoch(epoch)
lr = adjust_learning_rate(optimizer, epoch, args)
if rank == 0:
print(f'==> epoch = {epoch}, lr = {lr}')
with torch.enable_grad():
loss_tensor_train = iterate(loaders['train'], model, optimizer, rank, args)
with torch.no_grad():
loss_tensor_test = iterate(loaders['test'], model, None, rank, args)
# tensorboard log
loss_tensor = torch.stack([loss_tensor_train, loss_tensor_test]).cuda()
torch.distributed.all_reduce(loss_tensor)
if rank == 0:
training_step = (epoch + 1) * len(data['train'])
loss_tensor = loss_tensor.cpu().numpy()
for i, split in enumerate(['train', 'test']):
for j, loss_type in enumerate(args.loss_types):
for step_id in range(args.seq_len):
writer.add_scalar(
'%s-loss_%s/%d' % (split, loss_type, step_id),
loss_tensor[i, j, step_id] / len(data[split]), epoch+1)
writer.add_scalar('learning_rate', lr, epoch + 1)
if rank == 0 and (epoch + 1) % args.snapshot_freq == 0:
visualize(loaders, model, epoch, args)
save_state = {
'state_dict': model.module.state_dict(),
}
torch.save(save_state, osp.join(args.model_dir, 'latest.pth'))
shutil.copyfile(
osp.join(args.model_dir, 'latest.pth'),
osp.join(args.model_dir, 'epoch_%d.pth' % (epoch + 1))
)
def adjust_learning_rate(optimizer, epoch, args):
if args.finetune:
if epoch < 5:
lr = 5e-4
elif epoch < 10:
lr = 2e-4
elif epoch < 15:
lr = 5e-5
else:
lr = 1e-5
else:
if epoch < 2:
lr = 1e-5
elif epoch < 5:
lr = 1e-3
elif epoch < 10:
lr = 5e-4
elif epoch < 20:
lr = 2e-4
elif epoch < 25:
lr = 5e-5
else:
lr = 1e-5
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def iterate(loader, model, optimizer, rank, args):
motion_metric = nn.MSELoss()
loss_tensor = torch.zeros([len(args.loss_types), args.seq_len])
if rank == 0:
loader = tqdm(loader, desc='test' if optimizer is None else 'train')
for batch in loader:
batch_size = batch['0-action'].size(0)
last_s = model.module.get_init_repr(batch_size).cuda()
batch_order = None
for step_id in range(args.seq_len):
output = model(
input_volume=batch['%d-tsdf' % step_id].cuda().unsqueeze(1),
last_s=last_s,
input_action=batch['%d-action' % step_id].cuda(),
input_motion=batch['%d-scene_flow_3d' % step_id].cuda() if args.model_type=='gtwarp' else None,
no_warp=args.model_type=='nowarp'
)
last_s = output['s'].data
loss = 0
if 'motion' in args.loss_types:
loss_motion = motion_metric(
output['motion'],
batch['%d-scene_flow_3d' % step_id].cuda()
)
loss_tensor[args.loss_idx['motion'], step_id] += loss_motion.item() * batch_size
loss += args.alpha_motion * loss_motion
if 'mask' in args.loss_types:
mask_gt = batch['%d-mask_3d' % step_id].cuda()
if batch_order is None:
batch_order = get_batch_order(output['init_logit'], mask_gt)
loss_mask = get_mask_loss(output['init_logit'], mask_gt, batch_order)
loss_tensor[args.loss_idx['mask'], step_id] += loss_mask.item() * batch_size
loss += args.alpha_mask * loss_mask
loss_tensor[args.loss_idx['all'], step_id] += loss.item() * batch_size
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step_id != args.seq_len - 1:
batch_order = get_batch_order(output['init_logit'], mask_gt)
return loss_tensor
def get_batch_order(logit_pred, mask_gt):
batch_order = []
B, K, S1, S2, S3 = logit_pred.size()
sum = 0
for b in range(B):
all_p = list(itertools.permutations(list(range(K - 1))))
best_loss, best_p = None, None
for p in all_p:
permute_pred = torch.stack(
[logit_pred[b:b + 1, -1]] + [logit_pred[b:b + 1, i] for i in p],
dim=1).contiguous()
cur_loss = nn.CrossEntropyLoss()(permute_pred, mask_gt[b:b + 1]).item()
if best_loss is None or cur_loss < best_loss:
best_loss = cur_loss
best_p = p
batch_order.append(best_p)
sum += best_loss
return batch_order
def get_mask_loss(logit_pred, mask_gt, batch_order):
loss = 0
B, K, S1, S2, S3 = logit_pred.size()
for b in range(B):
permute_pred = torch.stack(
[logit_pred[b:b + 1, -1]] + [logit_pred[b:b + 1, i] for i in batch_order[b]],
dim=1).contiguous()
loss += nn.CrossEntropyLoss()(permute_pred, mask_gt[b:b + 1])
return loss
def visualize(loaders, model, epoch, args):
visualization_path = osp.join(args.visualization_dir, 'epoch_%03d' % (epoch + 1))
figures = {}
ids = [split + '_' + str(itr) + '-' + str(step_id)
for split in ['train', 'test']
for itr in range(args.batch)
for step_id in range(args.seq_len)]
cols = ['color_image', 'color_heightmap', 'motion_gt', 'motion_pred', 'mask_gt']
if args.model_type != '3dflow':
cols = cols + ['mask_pred', 'next_mask_pred']
with torch.no_grad():
for split in ['train', 'test']:
model.train()
batch = iter(loaders[split]).next()
batch_size = batch['0-action'].size(0)
last_s = model.module.get_init_repr(batch_size).cuda()
for step_id in range(args.seq_len):
output = model(
input_volume=batch['%d-tsdf' % step_id].cuda().unsqueeze(1),
last_s=last_s,
input_action=batch['%d-action' % step_id].cuda(),
input_motion=batch['%d-scene_flow_3d' % step_id].cuda() if args.model_type=='gtwarp' else None,
no_warp=args.model_type=='nowarp',
next_mask=True
)
last_s = output['s'].data
vis_color_image = batch['%d-color_image' % step_id].numpy()
vis_color_heightmap = batch['%d-color_heightmap' % step_id].numpy()
motion_gt = torch.sum(batch['%d-scene_flow_3d' % step_id][:, :2, ...], dim=4).numpy()
motion_pred = torch.sum(output['motion'][:, :2, ...], dim=4).cpu().numpy()
vis_mask_gt = mask_visualization(batch['%d-mask_3d' % step_id].numpy())
if args.model_type != '3dflow':
vis_mask_pred = mask_visualization(output['init_logit'].cpu().numpy())
vis_next_mask_pred = mask_visualization(output['next_mask'].cpu().numpy())
for k in range(args.batch):
figures['%s_%d-%d_color_image' % (split, k, step_id)] = vis_color_image[k]
figures['%s_%d-%d_color_heightmap' % (split, k, step_id)] = vis_color_heightmap[k]
figures['%s_%d-%d_motion_gt' % (split, k, step_id)] = flow2im(motion_gt[k])
figures['%s_%d-%d_motion_pred' % (split, k, step_id)] = flow2im(motion_pred[k])
figures['%s_%d-%d_mask_gt' % (split, k, step_id)] = vis_mask_gt[k]
if args.model_type != '3dflow':
figures['%s_%d-%d_mask_pred' % (split, k, step_id)] = vis_mask_pred[k]
figures['%s_%d-%d_next_mask_pred' % (split, k, step_id)] = vis_next_mask_pred[k]
html_visualize(visualization_path, figures, ids, cols, title=args.exp)
if __name__ == '__main__':
main()