-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecution.R
158 lines (125 loc) · 6 KB
/
execution.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
process_execution_data <- function(files) {
names(files) <- NULL
dates <- vector()
class(dates) <- "POSIXct"
for (file in files) {
date <- as.POSIXct(sub(".*(\\d{2}-\\d{2}-\\d{2}_\\d{4}-\\d{2}-\\d{2})_.*$", "\\1", file), format = "%H-%M-%S_%F")
dates <- c(dates, date)
}
commits <- sapply(files, function(x) substr(sub(".*([a-f0-9]{40}).*$", "\\1", x), 0, 7), USE.NAMES = FALSE)
data <- lapply(files, calclog)
names(data) <- sapply(1:length(files), function(i) date_commit=sprintf("%s(%s)",
strftime(dates[i], "%m/%d/%y %H:%M:%S"),
commits[i]))
data[order(dates)]
}
calclog <- function(fileNames){
#opening file of the name:fileNames
conn <- file(fileNames,open="r")
#stores every line in fileNames
linn <-readLines(conn)
close(conn)
#counters used to parse the file
i = 1
m = 1
#vector of the path without "/"
nameTable <- strsplit(fileNames, "[/]")[1]
#name of the .txt file
testName <- strsplit(nameTable[[1]][length(nameTable[[1]])], "[.]")[[1]][1]
#path to the .txt file
pathName <- nameTable[[1]][1]
for(y in 2:(length(nameTable[[1]])-1)){
pathName <- paste(pathName, nameTable[[1]][y] ,sep="/")
}
#total number of times the execute in each game is ran
numberofruns = length(strsplit(linn[1], "[,]")[[1]]) - 2
#total number of files being ran
numberoffiles = length(readLines(fileNames))/2
#df of the complete raw, includes rjit and gnur
rawdata <- data.frame(matrix(ncol=1,nrow=numberofruns))
#the median of normalised rjit runtime
medNR <- data.frame(matrix(ncol=7,nrow=numberoffiles), stringsAsFactors=FALSE)
#setting up the labels for medNR
names(medNR) <- c("name", "compilation_time", "median_time", "top_quantile", "bottom_quantile", "large_CT", "graph_CT")
#result of rjit normalised against the median of the corresponding gnur
norm <- data.frame(matrix(ncol=numberoffiles+1, nrow=numberofruns))
#setting up the labels for norm
names(norm) <- "runs"
norm[1, 1] <- "compilation time"
for(p in 2:numberofruns){
norm[p, 1] <- paste("run", p, sep="-")
}
#loop to traverse over every line in fileName
while (i < length(linn)){
#vector with rjit and gnur result of line i
rjit <- strsplit(linn[i], "[,]")[1]
gnur <- strsplit(linn[i+1], "[,]")[1]
#matrix containing values parsed from the ith line in fileName
datas <- array(0, dim=c(length(rjit[[1]]) - 2,2))
#parsing the name of the benchmark
testN <- strsplit(strsplit(trim(rjit[[1]][2]),"[.]")[[1]][1], "[/]")
filen <- testN[[1]][length(testN[[1]])]
rjitn <- paste(filen, "rjit", sep="-")
gnurn <- paste(filen, "gnur", sep="-")
#temporarily storing the raw value of rjit and gnur run
for (j in 1:length(rjit[[1]])-2) {
datas[j, 1] = strtoi(trim(rjit[[1]][j+2]))
datas[j, 2] = strtoi(trim(gnur[[1]][j+2]))
}
#calculating the median for gnur
med <- apply(datas, 2, median)[2]
#normalising rjit and gnur against the median of gnur
normRjit <- (datas/med)
#storing the raw information into the rawdata df
tempdatas <- data.frame(datas[, 1], datas[, 2])
names(tempdatas) <- c(rjitn, gnurn)
rawdata <- cbind(rawdata, tempdatas)
#storing the median, max and min values of the normalised rjit runtime
medNR$name[m] = filen
medNR$median_time[m] = median(normRjit[2:numberofruns])
medNR$top_quantile[m] = quantile(normRjit[2:numberofruns], c(0.75))
medNR$bottom_quantile[m] = quantile(normRjit[2:numberofruns], c(0.25))
#if the compilation time (run1) is two times greater than the largest non-compilation run then it is stored in large_CT
if(normRjit[1] > max(normRjit[2:numberofruns])*2){
medNR$compilation_time[m] = NA
medNR$large_CT[m] = paste(round(normRjit[1], digits=1)*100, "%", sep="")
} else{
medNR$compilation_time[m] = normRjit[1]
medNR$large_CT[m] = NA
}
#storing all the normalised value of rjit runtime
for(n1 in 1:numberofruns){
norm[n1,m+1] = normRjit[n1]
names(norm)[m+1] = filen
}
i = i + 2
m = m + 1
}
#removing the vectors of zero, because of cbhind
rawdata <- rawdata[, -1]
#ordering medNR by the median for ggplot
medNR$name <- factor(medNR$name, levels = medNR$name[order(medNR$median_time)])
#ordering medNR by the median
medNR <- medNR[with(medNR, order(median_time)),]
#setting the x-axis for large_CT
for(r in 1:numberoffiles){
if(is.na(medNR$compilation_time[r])){
medNR$graph_CT[r] = r
}
}
medNR
}
graphlog <- function(medNR, name) {
graphn <- ggplot() + geom_pointrange(data=medNR, mapping=aes(x=name, y=median_time, ymin=top_quantile, ymax=bottom_quantile), size=0.6, color="blue", fill="white", shape=20) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
geom_hline(yintercept=1, size=0.5) +
ylab("% of slowdown") +
annotate("text", x=8, y = 1.1, label = "normalised gnur", size=3) +
annotate("text", x=medNR$graph_CT, y=max(medNR$compilation_time, na.rm=TRUE), label=medNR$large_CT, angle=60, size=2) +
annotate("point", x=medNR$graph_CT, y=max(medNR$compilation_time, na.rm=TRUE)+0.13, shape=94, size=5, color="red") +
annotate("point", x=medNR$name, y=medNR$compilation_time, color="red") +
expand_limits(y=0) +
ggtitle("RJIT performance against R 3-2 (R_ENABLE_JIT=0) for \n the shootout benchmark")
print(graphn)
}
trim <- function (x) gsub("^\\s+|\\s+$", "", x)